Tuff (from the Italian tufo), also known as volcanic tuff, is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is compacted into a solid rock in a process called consolidation.[1] Rock that contains greater than 75% ash is considered tuff, while rock containing 25% to 75% ash is described as tuffaceous.[2]

Etruscan tuff blocks from a tomb at Banditaccia

Tuff is a relatively soft rock, so it has been used for construction since ancient times.[3][4] Because it is common in Italy, the Romans used it often for construction.[5] The Rapa Nui people used it to make most of the moai statues in Easter Island.[6] Tuff is sometimes erroneously called "tufa", particularly when used as construction material, but geologically tufa is a limestone precipitated from groundwater.

Tuff can be classified as either sedimentary or igneous rock. It is usually studied in the context of igneous petrology, although it is sometimes described using sedimentological terms.

Volcanic ashEdit

The material that is expelled in a volcanic eruption can be classified into three types:

  1. Volcanic gases, a mixture made mostly of steam, carbon dioxide, and a sulfur compound (either sulfur dioxide, SO2, or hydrogen sulfide, H2S, depending on the temperature)
  2. Lava, the name of magma when it emerges and flows over the surface
  3. Tephra, particles of solid material of all shapes and sizes ejected and thrown through the air

Tephra is made when magma inside the volcano is blown apart by the rapid expansion of hot volcanic gases. Magma commonly explodes as the gas dissolved in it comes out of solution as the pressure decreases when it flows to the surface. These violent explosions produce particles of material that can then fly from the volcano. Solid particles smaller than 2 mm in diameter (sand-sized or smaller) are called volcanic ash.[7][2]

Volcanic ash is further divided into fine ash, with particle sizes smaller than 0.0625 mm in diameter, and coarse ash, with particle sizes between 0.0625 mm and 2 mm in diameter. Tuff is correspondingly divided into coarse tuff (coarse ash tuff) and fine tuff (fine ash tuff or dust tuff). Consolidated tephra composed mostly of coarser particles is called lapillistone (particles 2 mm to 64 mm in diameter) or agglomerate or pyroclastic breccia (particles over 64 mm in diameter) rather than tuff.[2]

Igneous rockEdit

 
Rocks from the Bishop tuff in California, uncompressed with pumice on left, compressed with fiamme on right

Apart from adventitious material, such as fragments of the older rocks, pieces of trees, etc., the contents of an ash deposit may be described as consisting of more or less crystalline igneous rocks. If the lava within the crater has been at such a temperature that solidification has commenced, crystals are usually present. They may be of considerable size like the grey, rounded leucite crystals found on the sides of Vesuvius. Many of these are very perfect and rich in faces because they grew in a medium that was liquid and not very viscous.

Good crystals of augite and olivine are also to be obtained in the ash beds of Vesuvius and of many other volcanoes, ancient and modern. Blocks of these crystalline minerals (anorthite, olivine, augite, and hornblende) are common objects in the tuffs of many of the West Indian volcanoes. Where crystals are very abundant, the ashes are called "crystal tuffs". In St. Vincent and Martinique in 1902, much of the dust was composed of minute crystals enclosed in thin films of glass because the lava at the moment of eruption had very nearly solidified as a crystalline mass. Some basaltic volcanoes, though, have ejected great quantities of black glassy scoria, which, after consolidation, weather to a red soft rock known as palagonite; tuffs of this kind occur in Iceland and Sicily.

In the Lipari Islands and Hungary, acid (rhyolitic) tuffs, of pale grey or yellow color, largely composed of lumps and fragments of pumice, occur. Over a large portion of the sea bottom, the beds of fine mud contain small, water-worn, rounded pebbles of very spongy volcanic glass; these have been floated from the shore or cast out by submarine volcanoes, and may have travelled for hundreds of miles before sinking; some kinds of pumice have been shown to float on seawater for more than a year. The deep sea-deposit known as the "red clay" is largely of volcanic origin and might be suitably described as a "submarine tuff-bed".[7]

TypesEdit

Welded tuffEdit

 
Welded tuff at Golden Gate in Yellowstone National Park

Welded tuff is a pyroclastic rock, of any origin, that was sufficiently hot at the time of deposition to weld together. Strictly speaking, if the rock contains scattered, pea-sized fragments or fiamme in it, it is called a welded lapilli-tuff. Welded tuffs (and welded lapilli-tuffs) can be of fallout origin, or deposited from pyroclastic density currents, as in the case of ignimbrites. During welding, the glass shards and pumice fragments adhere together (necking at point contacts), deform, and compact together, resulting in a eutaxitic fabric.

Welded ignimbrites can be highly voluminous, such as the Lava Creek Tuff erupted from Yellowstone Caldera in Wyoming 640,000 years ago. Lava Creek tuff is known to be at least 1000 times as large as the deposits of the May 18, 1980 eruption of Mount St. Helens, and it had a Volcanic Explosivity Index (VEI) of 8, greater than any eruption known in the last 10,000 years. The intensity of welding may decrease towards the upper margin of a deposit, towards areas in which the deposit is thinner, and with distance from source. Welded tuff is commonly rhyolitic in composition, but examples of all compositions are known.

Rhyolitic tuffEdit

 
Light-microscope image of tuff as seen in thin section (long dimension is several mm): The curved shapes of altered glass shards (ash fragments) are well preserved, although the glass is partly altered. The shapes were formed about bubbles of expanding, water-rich gas.
 
The rhyolitic tuff portal of the "church house" at Colditz Castle, Saxony, designed by Andreas Walther II (1584)

For petrographical purposes, tuff is generally classified according to the nature of the volcanic rock of which it consists; this may be the same as the accompanying lavas if any were emitted during an eruption, and if a change occurs in the kind of lava which is poured out, the tuffs also indicate this equally clearly. Rhyolite tuffs contain pumiceous, glassy fragments and small scoriae with quartz, alkali feldspar, biotite, etc. Iceland, Lipari, Hungary, the Basin and Range of the American southwest, and New Zealand are among the areas where such tuffs are prominent. The broken pumice is clear and isotropic, and very small particles commonly have crescentic, sickle-shaped, or biconcave outlines, showing that they are produced by the shattering of a vesicular glass,[7] sometimes described as ash-structure. The tiny glass fragments derived from broken pumice are called shards; the glass shards readily deform and flow when the deposits are sufficiently hot, as shown in the accompanying image of welded tuff.

In the ancient rocks of Wales, Charnwood, the Pentland Hills, etc., similar tuffs are known, but in all cases, they are greatly changed by silicification (which has filled them with opal, chalcedony, and quartz) and by devitrification. The frequent presence of rounded corroded quartz crystals, such as occur in rhyolitic lavas, helps to demonstrate their real nature.[7]

An example of this tuff, Rochlitz Porphyr, can be seen in the Mannerist-style sculpted portal outside the chapel entrance in Colditz Castle.[8] The trade name Rochlitz Porphyr is the traditional designation for a dimension stone of Saxony with an architectural history over 1,000 years in Germany. The quarries are located near Rochlitz.[9]

Trachyte tuffEdit

Trachyte tuffs contain little or no quartz, but much sanidine or anorthoclase and sometimes oligoclase feldspar, with occasional biotite, augite, and hornblende. In weathering, they often change to soft red or yellow clay-stones, rich in kaolin with secondary quartz. Recent trachyte tuffs are found on the Rhine (at Siebengebirge), in Ischia, near Naples, Hungary, etc.[7]

Andesitic tuffEdit

Andesitic tuffs are exceedingly common. They occur along the whole chain of the Cordilleras and Andes, in the West Indies, New Zealand, Japan, etc. In the Lake District, North Wales, Lorne, the Pentland Hills, the Cheviots, and many other districts of Great Britain, ancient rocks of exactly similar nature are abundant. In color, they are red or brown; their scoriae fragments are of all sizes from huge blocks down to minute granular dust. The cavities are filled with many secondary minerals, such as calcite, chlorite, quartz, epidote, or chalcedony; in microscopic sections, though, the nature of the original lava can nearly always be made out from the shapes and properties of the little crystals which occur in the decomposed glassy base. Even in the smallest details, these ancient tuffs have a complete resemblance to the modern ash beds of Cotopaxi, Krakatoa, and Mont Pelé.[7]

Basaltic tuffEdit

 
Most of the moais in Easter Island are carved out of tholeiite basalt tuff.

Basaltic tuffs are also of widespread occurrence both in districts where volcanoes are now active and in lands where eruptions have long since ended. They are found in Skye, Mull, Antrim, and other places, where Paleogene volcanic rocks are found; in Scotland, Derbyshire, and Ireland among the Carboniferous strata, and among the still older rocks of the Lake District, the southern uplands of Scotland, and Wales. They are black, dark green, or red in colour; vary greatly in coarseness, some being full of round spongy bombs a foot or more in diameter; and being often submarine, may contain shale, sandstone, grit, and other sedimentary material, and are occasionally fossiliferous. Recent basaltic tuffs are found in Iceland, the Faroe Islands, Jan Mayen, Sicily, the Hawaiian Islands, Samoa, etc. When weathered, they are filled with calcite, chlorite, serpentine, and especially where the lavas contain nepheline or leucite, are often rich in zeolites, such as analcite, prehnite, natrolite, scolecite, chabazite, heulandite, etc.[7]

Ultramafic tuffEdit

Ultramafic tuffs are extremely rare; their characteristic is the abundance of olivine or serpentine and the scarcity or absence of feldspar and quartz. Rare occurrences may include unusual surface deposits of maars of kimberlites of the diamond-fields of southern Africa and other regions. The principal rock of kimberlite is a dark bluish-green, serpentine-rich breccia (blue-ground) which when thoroughly oxidized and weathered becomes a friable brown or yellow mass (the "yellow-ground").[7] These breccias were emplaced as gas–solid mixtures and are typically preserved and mined in diatremes that form intrusive pipe-like structures. At depth, some kimberlite breccias grade into root zones of dikes made of unfragmented rock. At the surface, ultramafic tuffs may occur in maar deposits. Because kimberlites are the most common igneous source of diamonds, the transitions from maar to diatreme to root-zone dikes have been studied in detail. Diatreme-facies kimberlite is more properly called an ultramafic breccia rather than a tuff.

Folding and metamorphismEdit

 
Remains of the ancient Servian Walls in Rome, made of tuff blocks

In course of time, changes other than weathering may overtake tuff deposits. Sometimes, they are involved in folding and become sheared and cleaved. Many of the green slates of the lake district in Cumberland are finely cleaved ashes. In Charnwood Forest also, the tuffs are slaty and cleaved. The green color is due to the large development of chlorite. Among the crystalline schists of many regions, green beds or green schists occur, which consist of quartz, hornblende, chlorite or biotite, iron oxides, feldspar, etc., and are probably recrystallized or metamorphosed tuffs. They often accompany masses of epidiorite and hornblende – schists which are the corresponding lavas and sills. Some chlorite-schists also are probably altered beds of volcanic tuff. The "Schalsteins" of Devon and Germany include many cleaved and partly recrystallized ash-beds, some of which still retain their fragmental structure, though their lapilli are flattened and drawn out. Their steam cavities are usually filled with calcite, but sometimes with quartz. The more completely altered forms of these rocks are platy, green chloritic schists; in these, however, structures indicating their original volcanic nature only sparingly occur. These are intermediate stages between cleaved tuffs and crystalline schists.[7]

ImportanceEdit

 
Ahu Tongariki on Easter Island, with 15 moai made of tuff from Rano Raraku crater: The second moai from the right has a Pukao ("topknot") which is made of red scoria.

Tuff's primary economic value is as a building material. In the ancient world, tuff's relative softness meant that it was commonly used for construction where it was available. Tuff is common in Italy, and the Romans used it for many buildings and bridges. For example, the whole port of the island of Ventotene (still in use), was carved from tuff. The Servian Wall, built to defend the city of Rome in the fourth century BC, is also built almost entirely from tuff.[citation needed] The Romans also cut tuff into small, rectangular stones that they used to create walls in a pattern known as opus reticulatum.

The Romans thought bees nested in tuff. The substance is mentioned in the Aeneid (Book XII, ln 805).

The peperino, much used at Rome and Naples as a building stone, is a trachyte tuff. Pozzolana also is a decomposed tuff, but of basic character, originally obtained near Naples and used as a cement, but this name is now applied to a number of substances not always of identical character. In the Eifel region of Germany, a trachytic, pumiceous tuff called trass has been extensively worked as a hydraulic mortar.[7]

Yucca Mountain nuclear waste repository, a U.S. Department of Energy terminal storage facility for spent nuclear reactor and other radioactive waste, is in tuff and ignimbrite in the Basin and Range Province in Nevada. In Napa Valley and Sonoma Valley, California, areas made of tuff are routinely excavated for storage of wine barrels.

Tuff from Rano Raraku was used by the Rapa Nui people of Easter Island to make the vast majority of their famous moai statues.

In ArmeniaEdit

Tuff is used extensively in Armenia and Armenian architecture.[10] It is the dominant type of stone used in construction in Armenia's capital Yerevan,[11][12] Gyumri, Armenia's second largest city, and Ani, the country's medieval capital, now in Turkey.[13] A small village in Armenia was renamed Tufashen (literally "built of tuff") in 1946.[14]

See alsoEdit

  • Bentonite – A smectite clay consisting mostly of montmorillonite
  • Sillar – A variety of rhyolite containing fragments of andesite
  • Eutaxitic texture – Layered or banded texture in some extrusive rock bodies
  • Tuffite – Tuff containing both pyroclastic and detrital materials
  • Brisbane tuff

ReferencesEdit

  1. ^ Fisher, Richard V.; Schmincke, H.-U. (1984). Pyroclastic rocks. Berlin: Springer-Verlag. pp. 89–90. ISBN 3540127569.
  2. ^ a b c Schmidt, R. (1981). "Descriptive nomenclature and classification of pyroclastic deposits and fragments: recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks". Geology. 9: 41–43. Retrieved 27 September 2020.
  3. ^ >Marcari, G., G. Fabbrocino, and G. Manfredi. "Shear seismic capacity of tuff masonry panels in heritage constructions." Structural Studies, Repairs and Maintenance of Heritage Architecture X 95 (2007): 73.
  4. ^ Dolan, S.G.; Cates, K.M.; Conrad, C.N.; Copeland, S.R. (14 March 2019). "Home Away from Home: Ancestral Pueblo Fieldhouses in the Northern Rio Grande". LANL-UR. 19-21132: 96. Retrieved 29 September 2020.
  5. ^ Jackson, M. D.; Marra, F.; Hay, R. L.; Cawood, C.; Winkler, E. M. (2005). "The Judicious Selection and Preservation of Tuff and Travertine Building Stone in Ancient Rome*". Archaeometry. 47 (3): 485–510. doi:10.1111/j.1475-4754.2005.00215.x.
  6. ^ Richards, Colin. 2016. "Making Moai: Reconsidering Concepts of Risk in the Construction of Megalithic Architecture in Rapa Nui (Easter Island)." Rapa Nui–Easter Island: Cultural and Historical Perspectives, pp.150-151
  7. ^ a b c d e f g h i j   One or more of the preceding sentences incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Tuff". Encyclopædia Britannica (11th ed.). Cambridge University Press.
  8. ^ Georg Dehio: Handbuch der deutschen Kunstdenkmäler, Sachsen II. Deutscher Kunstverlag, München, Berlin 1998, p. 160
  9. ^ Heiner Siedel: Sächsische „Porphyrtuffe“ aus dem Rotliegend als Baugesteine: Vorkommen und Abbau, Anwendung, Eigenschaften und Verwitterung. In: Institut für Steinkonservierung e. V. Bericht Nr. 22, 2006, p. 47-58. "Archived copy" (PDF). Archived from the original (PDF) on 2011-06-11. Retrieved 2010-05-09.CS1 maint: archived copy as title (link)
  10. ^ Holding, N. (2006). Armenia: with Nagorno Karabagh. Bradt Travel Guides. p. 32. ISBN 978-1-84162-163-0. Retrieved May 26, 2010.
  11. ^ Billock, Jennifer (28 December 2016). "How Ancient Volcanoes Created Armenia's Pink City". Smithsonian. Archived from the original on 9 June 2020. ...pink tuff is rare outside of the region and Yerevan is the only major city built out of this stone.
  12. ^ Lottman, Herbert R. "Despite Ages of Captivity, The Armenians Persevere". The New York Times. The city, whose population is now upwards of 800,000, has been rebuilt in the rosy volcanic stone called tufa...
  13. ^ Haviland, William A; Harald, E. L. Prins; Dana, Walrath; McBride, Bunny (2015). The Essence of Anthropology (4th ed.). Cengage Learning. p. 137. ...walls of monumental buildings at Ani (including the fortifications) were built of smoothly dressed blocks of tuff stone...
  14. ^ Hakobian, T. Kh.; Melik-Bakhshian, St. T.; Barseghian, H. Kh. (2001). "Տուֆաշեն [Tufashen]". Հայաստանի և հարակից շրջանների տեղանունների բառարան [Dictionary of Toponyms of Armenia and Surrounding Regions] Volume V (in Armenian). Yerevan University Press. p. 147.