Active and passive transformation: Difference between revisions

no edit summary
 
=== Passive transformation ===
On the other hand, when one views <math>T</math> as a passive transformation, the initial vector <math>\mathbf{v}=(v_x,v_y,v_z)</math> is left unchanged, while the coordinate system and its basis vectors are transformed in the opposite direction, i.e. with the inverse transformation <math>T^{-1}</math>. This gives a new coordinate system XYZ with basis vectors:
<ref name=Amidror>
{{cite book |isbn=1-4020-5457-2 |year=2007 |publisher=Springer |title=The theory of the Moiré phenomenon: Aperiodic layers |first=Isaac|last=Amidror
|url=https://books.google.com/books?id=Z_QRomE5g3QC&pg=PT361 |chapter=Appendix D: Remark D.12 |page=346 }}
</ref> This gives a new coordinate system XYZ with basis vectors:
:<math>\mathbf{e}_X=T^{-1}(1,0,0),\ \mathbf{e}_Y=T^{-1}(0,1,0),\ \mathbf{e}_Z=T^{-1}(0,0,1)</math>
 
Note the difference between <math>(v_X,v_Y,v_Z)</math> and <math>(v'_x,v'_y,v'_z)</math>
 
{{cite book |isbn=1-4020-5457-2 |year=2007 |publisher=Springer |title=The theory of the Moiré phenomenon: Aperiodic layers |first=Isaac|last=Amidror
|url=https://books.google.com/books?id=Z_QRomE5g3QC&pg=PT361 |chapter=Appendix D: Remark D.12 |page=346 }}
</ref>
 
==See also==
173

edits