Stress–energy–momentum pseudotensor: Difference between revisions

Answer taken from Albert Einstein; I can't vouch for it independently, although it's quite plausible.
m (Dating maintenance tags: {{Who}})
(Answer taken from Albert Einstein; I can't vouch for it independently, although it's quite plausible.)
In the theory of [[general relativity]], a '''stress–energy–momentum pseudotensor''', such as the '''Landau–Lifshitz pseudotensor''', is an extension of the non-gravitational [[stress–energy tensor]] which incorporates the [[energy–momentum]] of gravity. It allows the [[energy–momentum]] of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a [[conserved current]] within the framework of [[general relativity]], so that the ''total'' energy–momentum crossing the [[hypersurface]] (3-dimensional boundary) of ''any'' compact [[space–time]] [[hypervolume]] (4-dimensional submanifold) vanishes.
 
Some people{{who|date=March 2015}}(such as [[Erwin Schrödinger]]) have objectobjected to this derivation on the grounds that [[pseudotensor]]s are inappropriate objects in general relativity, but the conservation law only requires the use of the 4-[[divergence]] of a pseudotensor which is, in this case, a tensor (which also vanishes). Also, most pseudotensors are sections of [[jet bundle]]s, which are now recognized as perfectly valid objects in GR.
 
==Landau–Lifshitz pseudotensor==