# Reduced mass

In physics, the **reduced mass** is the "effective" inertial mass appearing in the two-body problem of Newtonian mechanics. It is a quantity which allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass determining the gravitational force is *not* reduced. In the computation one mass *can* be replaced with the reduced mass, if this is compensated by replacing the other mass with the sum of both masses. The reduced mass is frequently denoted by (mu), although the standard gravitational parameter is also denoted by (as are a number of other physical quantities). It has the dimensions of mass, and SI unit kg.

## Contents

## EquationEdit

Given two bodies, one with mass *m*_{1} and the other with mass *m*_{2}, the equivalent one-body problem, with the position of one body with respect to the other as the unknown, is that of a single body of mass^{[1]}^{[2]}

where the force on this mass is given by the force between the two bodies.

### PropertiesEdit

The reduced mass is always less than or equal to the mass of each body:

and has the reciprocal additive property:

which by re-arrangement is equivalent to half of the harmonic mean.

In the special case that :

If , then .

## DerivationEdit

The equation can be derived as follows.

### Newtonian mechanicsEdit

Using Newton's second law, the force exerted by a body (particle 2) on another body (particle 1) is:

The force exerted by particle 1 on particle 2 is:

According to Newton's third law, the force that particle 2 exerts on particle 1 is equal and opposite to the force that particle 1 exerts on particle 2:

Therefore:

The relative acceleration **a**_{rel} between the two bodies is given by:

Note that (since the derivative is a linear operator), the relative acceleration is equal to the acceleration of the separation between the two particles.

This means that there is only one force (since ), one coordinate , and one mass . Thus we have reduced our problem to a single degree of freedom, and we can conclude that particle 1 moves with respect to the position of particle 2 as a single particle of mass equal to the reduced mass, .

### Lagrangian mechanicsEdit

Alternatively, a Lagrangian description of the two-body problem gives a Lagrangian of

where is the position vector of mass (of particle * *). The potential energy *V* is a function as it is only dependent on the absolute distance between the particles. If we define

and let the centre of mass coincide with our origin in this reference frame, i.e.

- ,

then

Then substituting above gives a new Lagrangian

where

is the reduced mass. Thus we have reduced the two-body problem to that of one body.

## ApplicationsEdit

Reduced mass can be used in a multitude of two-body problems, where classical mechanics is applicable.

### Moment of inertia of two point masses in a lineEdit

In a system with two point masses m_{1} and m_{2} such that they are co-linear, the center of mass may be found via

.

The moment of inertia of this system in the center of mass frame of reference is a two-body problem with two masses, each with its own distance to the center of mass. By converting to the equivalent reduced mass frame of reference, the system may be treated as a single reduced mass, μ, with a distance, d, equal to the sum of x_{1} and x_{2}. This is because the rotational axis of the reduced mass frame of reference is through the combined mass, M (the sum of m_{1} and m_{2})

The combined mass M is eliminated in the determination of the moment of inertia of the system since it is a point particle (making M the same size as μ, but with greater mass. Images not drawn to scale) along the axis of rotation (via the parallel axis theorem, it's contribution of MR^{2} would be zero since R=0 because M and μ are *also* point masses). Determining the moment of inertia of the reduced mass (μ) system is equivalent to determining the moment of inertia of the center of mass system.

### Collisions of particlesEdit

In a collision with a coefficient of restitution *e*, the change in kinetic energy can be written as

- ,

where v_{rel} is the relative velocity of the bodies before collision.

For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger particle's exact mass is not known.

### Motion of two massive bodies under their gravitational attractionEdit

In the case of the gravitational potential energy

we find that the position of the first body with respect to the second is governed by the same differential equation as the position of a body with the reduced mass orbiting a body with a mass equal to the sum of the two masses, because

### Non-relativistic quantum mechanicsEdit

Consider the electron (mass *m _{e}*) and proton (mass

*m*) in the hydrogen atom.

_{p}^{[3]}They orbit each other about a common centre of mass, a two body problem. To analyze the motion of the electron, a one-body problem, the reduced mass replaces the electron mass

and the proton mass becomes the sum of the two masses

This idea is used to set up the Schrödinger equation for the hydrogen atom.

### Other usesEdit

"Reduced mass" may also refer more generally to an algebraic term of the form^{[citation needed]}

that simplifies an equation of the form

The reduced mass is typically used as a relationship between two system elements in parallel, such as resistors; whether these be in the electrical, thermal, hydraulic, or mechanical domains. A similar expression appears in the transversal vibrations of beams for the elastic moduli.^{[4]} This relationship is determined by the physical properties of the elements as well as the continuity equation linking them.

## See alsoEdit

- Center-of-momentum frame
- Momentum conservation
- Defining equation (physics)
- Harmonic oscillator
- Chirp mass, a relativistic equivalent used in the post-Newtonian expansion

## ReferencesEdit

**^**Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, (Verlagsgesellschaft) 3-527-26954-1, (VHC Inc.) 0-89573-752-3**^**Dynamics and Relativity, J.R. Forshaw, A.G. Smith, Wiley, 2009, ISBN 978-0-470-01460-8**^**Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry (Volume 1), P.W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0**^**Experimental study of the Timoshenko beam theory predictions, A.Díaz-de-Anda J.Flores, L.Gutiérrez, R.A.Méndez-Sánchez, G.Monsivais, and A.Morales.Journal of Sound and Vibration Volume 331, Issue 26, 17 December 2012, Pages 5732-5744 https://doi.org/10.1016/j.jsv.2012.07.041