Quantum physics

Quantum physics is a branch of modern physics in which energy and matter are described at their most fundamental level, that of energy quanta, elementary particles, and quantum fields. Quantum physics encompasses any discipline concerned with systems that exhibit notable quantum-mechanical effects, where waves have properties of particles, and particles behave like waves.[1] When particles are bound in quantum-mechanical systems, their energy can only change in discrete steps, energy quanta. Even though our description of systems in quantum physics starts at the scale of atoms and subatomic particles, the effects can extend to collective behavior and emergent phenomena at macroscopic scales.


Quantum mechanics has had enormous[2] success in explaining many of the features of our universe. Quantum mechanics is often the only theory that can reveal the individual behaviors of the subatomic particles that make up all forms of matter (electrons, protons, neutrons, photons, and others). Quantum mechanics has strongly influenced string theories, candidates for a Theory of everything (see reductionism).

Quantum mechanics is also critically important for understanding how individual atoms are joined by covalent bonds to form molecules. The application of quantum mechanics to chemistry is known as quantum chemistry. Quantum mechanics can also provide quantitative insight into ionic and covalent bonding processes by explicitly showing which molecules are energetically favorable to which others and the magnitudes of the energies involved.[3] Furthermore, most of the calculations performed in modern computational chemistry rely on quantum mechanics.

In many aspects modern technology operates at a scale where quantum effects are significant. Important applications of quantum theory include quantum chemistry, quantum optics, quantum computing, superconducting magnets, light-emitting diodes, the optical amplifier and the laser, the transistor and semiconductors such as the microprocessor, medical and research imaging such as magnetic resonance imaging and electron microscopy.[4] Explanations for many biological and physical phenomena are rooted in the nature of the chemical bond, most notably the macro-molecule DNA.[5]


Many modern electronic devices are designed using quantum mechanics. Examples include the laser, the transistor (and thus the microchip), the electron microscope, and magnetic resonance imaging (MRI). The study of semiconductors led to the invention of the diode and the transistor, which are indispensable parts of modern electronics systems, computer and telecommunication devices. Another application is for making laser diodes and light emitting diodes, which are a high-efficiency source of light.

A working mechanism of a resonant tunneling diode device, based on the phenomenon of quantum tunneling through potential barriers. (Left: band diagram; Center: transmission coefficient; Right: current-voltage characteristics) As shown in the band diagram(left), although there are two barriers, electrons still tunnel through via the confined states between two barriers(center), conducting current.

Many electronic devices operate under effect of quantum tunneling. It even exists in the simple light switch. The switch would not work if electrons could not quantum tunnel through the layer of oxidation on the metal contact surfaces. Flash memory chips found in USB drives use quantum tunneling to erase their memory cells. Some negative differential resistance devices also utilize quantum tunneling effect, such as resonant tunneling diodes. Unlike classical diodes, its current is carried by resonant tunneling through two or more potential barriers (see right figure). Its negative resistance behavior can only be understood with quantum mechanics: As the confined state moves close to Fermi level, tunnel current increases. As it moves away, current decreases. Quantum mechanics is necessary to understand and design such electronic devices.


Researchers are currently seeking robust methods of directly manipulating quantum states. Efforts are being made to more fully develop quantum cryptography, which will theoretically allow guaranteed secure transmission of information.

An inherent advantage yielded by quantum cryptography when compared to classical cryptography is the detection of passive eavesdropping. This is a natural result of the behavior of quantum bits; due to the observer effect, if a bit in a superposition state were to be observed, the superposition state would collapse into an eigenstate. Because the intended recipient was expecting to receive the bit in a superposition state, the intended recipient would know there was an attack, because the bit's state would no longer be in a superposition.[6]

Quantum computingEdit

Another goal is the development of quantum computers, which are expected to perform certain computational tasks exponentially faster than classical computers. Instead of using classical bits, quantum computers use qubits, which can be in superpositions of states. Quantum programmers are able to manipulate the superposition of qubits in order to solve problems that classical computing cannot do effectively, such as searching unsorted databases or integer factorization. IBM claims that the advent of quantum computing may progress the fields of medicine, logistics, financial services, artificial intelligence and cloud security.[7]

Another active research topic is quantum teleportation, which deals with techniques to transmit quantum information over arbitrary distances.

Macroscale quantum effectsEdit

While quantum mechanics primarily applies to the smaller atomic regimes of matter and energy, some systems exhibit quantum mechanical effects on a large scale. Superfluidity, the frictionless flow of a liquid at temperatures near absolute zero, is one well-known example. So is the closely related phenomenon of superconductivity, the frictionless flow of an electron gas in a conducting material (an electric current) at sufficiently low temperatures. The fractional quantum Hall effect is a topological ordered state which corresponds to patterns of long-range quantum entanglement.[8] States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.

Other phenomenaEdit

Quantum theory also provides accurate descriptions for many previously unexplained phenomena, such as black-body radiation and the stability of the orbitals of electrons in atoms. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.[9] Recent work on photosynthesis has provided evidence that quantum correlations play an essential role in this fundamental process of plants and many other organisms.[10] Even so, classical physics can often provide good approximations to results otherwise obtained by quantum physics, typically in circumstances with large numbers of particles or large quantum numbers. Since classical formulas are much simpler and easier to compute than quantum formulas, classical approximations are used and preferred when the system is large enough to render the effects of quantum mechanics insignificant.


  1. ^ "Subject: Quantum physics". Nature Research. Retrieved 2020-11-24.
  2. ^ See, for example, the Feynman Lectures on Physics for some of the technological applications which use quantum mechanics, e.g., transistors (vol III, pp. 14–11 ff), integrated circuits, which are follow-on technology in solid-state physics (vol II, pp. 8–6), and lasers (vol III, pp. 9–13).
  3. ^ Pauling, Linus; Wilson, Edgar Bright (1985). Introduction to Quantum Mechanics with Applications to Chemistry. ISBN 9780486648712. Retrieved 2012-08-18.
  4. ^ Matson, John. "What Is Quantum Mechanics Good for?". Scientific American. Retrieved 18 May 2016.
  5. ^ The Nobel laureates Watson and Crick cited Pauling, Linus (1939). The Nature of the Chemical Bond and the Structure of Molecules and Crystals. Cornell University Press. for chemical bond lengths, angles, and orientations.
  6. ^ Schneier, Bruce (1993). Applied Cryptography (2nd ed.). Wiley. p. 554. ISBN 978-0471117094.
  7. ^ "Applications of Quantum Computing". research.ibm.com. Retrieved 28 June 2017.
  8. ^ Chen, Xie; Gu, Zheng-Cheng; Wen, Xiao-Gang (2010). "Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order". Phys. Rev. B. 82 (15): 155138. arXiv:1004.3835. Bibcode:2010PhRvB..82o5138C. doi:10.1103/physrevb.82.155138. S2CID 14593420.
  9. ^ Anderson, Mark (2009-01-13). "Is Quantum Mechanics Controlling Your Thoughts? | Subatomic Particles". Discover Magazine. Retrieved 2012-08-18.
  10. ^ "Quantum mechanics boosts photosynthesis". physicsworld.com. Retrieved 2010-10-23.