# Percolation threshold

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.

## Percolation models

The most common percolation model is to take a regular lattice, like a square lattice, and make it into a random network by randomly "occupying" sites (vertices) or bonds (edges) with a statistically independent probability p. At a critical threshold pc, large clusters and long-range connectivity first appears, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold. More general systems have several probabilities p1, p2, etc., and the transition is characterized by a critical surface or manifold. One can also consider continuum systems, such as overlapping disks and spheres placed randomly, or the negative space (Swiss-cheese models).

In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation. For a continuum system, random occupancy corresponds to the points being placed by a Poisson process. Further variations involve correlated percolation, such as percolation clusters related to Ising and Potts models of ferromagnets, in which the bonds are put down by the Fortuin-Kasteleyn method.[1] In bootstrap or k-sat percolation, sites and/or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors. Another important model of percolation, in a different universality class altogether, is directed percolation, where connectivity along a bond depends upon the direction of the flow.

Over the last several decades, a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems. Exact thresholds are only known for certain two-dimensional lattices that can be broken up into a self-dual array, such that under a triangle-triangle transformation, the system remains the same. Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries.

Simply duality in two dimensions implies that all fully triangulated lattices (e.g., the triangular, union jack, cross dual, martini dual and asanoha or 3-12 dual, and the Delaunay triangulation) all have site thresholds of 1/2, and self-dual lattices (square, martini-B) have bond thresholds of 1/2.

The notation such as (4,82) comes from Grünbaum and Shephard,[2] and indicates that around a given vertex, going in the clockwise direction, one encounters first a square and then two octagons. Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent, many other more complicated lattices with sites of different classes have been studied.

Error bars in the last digit or digits are shown by numbers in parentheses. Thus, 0.729724(3) signifies 0.729724 ± 0.000003, and 0.74042195(80) signifies 0.74042195 ± 0.00000080. The error bars variously represent one or two standard deviations in net error (including statistical and expected systematic error), or an empirical confidence interval.

## Percolation on 2D lattices

### Thresholds on Archimedean lattices

This is a picture[3] of the 11 Archimedean Lattices or uniform tilings, in which all polygons are regular and each vertex is surrounded by the same sequence of polygons. The notation "(34, 6)", for example, means that every vertex is surrounded by four triangles and one hexagon. See also Uniform tilings.

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
3-12 or (3, 122 ) 3 3 0.807900764... = (1 − 2 sin (π/18))1/2[4] 0.74042195(80),[5] 0.74042077(2)[6] 0.740420800(2),[7] 0.7404207988509(8),[8][9] 0.740420798850811610(2),[10]
cross, truncated trihexagonal (4, 6, 12) 3 3 0.746,[11] 0.750,[12] 0.747806(4),[4] 0.7478008(2)[8] 0.6937314(1),[8] 0.69373383(72),[5] 0.693733124922(2)[10]
square octagon, bathroom tile, 4-8, truncated square

(4, 82)

3 - 0.729,[11] 0.729724(3),[4] 0.7297232(5)[8] 0.6768,[13] 0.67680232(63),[5]

0.6768031269(6),[8] 0.6768031243900113(3),[10]

honeycomb (63) 3 3 0.6962(6),[14] 0.697040230(5),[8] 0.6970402(1),[15] 0.6970413(10),[16] 0.697043(3),[4] 0.652703645... = 1-2 sin (π/18), 1+ p3-3p2=0[17]
kagome (3, 6, 3, 6) 4 4 0.652703645... = 1 − 2 sin(π/18)[17] 0.5244053(3),[18] 0.52440516(10),[16] 0.52440499(2),[15] 0.524404978(5),[6] 0.52440572...,[19] 0.52440500(1),[7]

0.524404999173(3),[8][9] 0.524404999167439(4)[20] 0.52440499916744820(1)[10]

ruby,[21] rhombitrihexagonal (3, 4, 6, 4) 4 4 0.620,[11] 0.621819(3),[4] 0.62181207(7)[8] 0.52483258(53),[5] 0.5248311(1),[8] 0.524831461573(1)[10]
square (44) 4 4 0.59274(10),[22] 0.59274605079210(2),[20] 0.59274601(2),[8] 0.59274605095(15),[23] 0.59274621(13),[24] 0.59274621(33),[25] 0.59274598(4),[26][27] 0.59274605(3),[15] 0.593(1),[28]

0.591(1),[29] 0.569(13)[30]

1/2
snub hexagonal, maple leaf[31] (34,6) 5 5 0.579[12] 0.579498(3)[4] 0.43430621(50),[5] 0.43432764(3),[8] 0.4343283172240(6),[10]
snub square, puzzle (32, 4, 3, 4 ) 5 5 0.550,[11][32] 0.550806(3)[4] 0.41413743(46),[5] 0.4141378476(7),[8] 0.4141378565917(1),[10]
frieze, elongated triangular(33, 42) 5 5 0.549,[11] 0.550213(3),[4] 0.5502(8)[33] 0.4196(6)[33], 0.41964191(43),[5] 0.41964044(1),[8] 0.41964035886369(2) [10]
triangular (36) 6 6 1/2 0.347296355... = 2 sin (π/18), 1 + p3 − 3p = 0[17]

Note: sometimes "hexagonal" is used in place of honeycomb, although in some fields, a triangular lattice is also called a hexagonal lattice. z = bulk coordination number.

### 2d lattices with extended and complex neighborhoods

In this section, sq-1,2,3 corresponds to square (NN+2NN+3NN) [34], etc. Equivalent to square-2N+3N+4N [35], sq(1,2,3)[36]. tri = triangular, hc = honeycomb.

Lattice z Site percolation threshold Bond percolation threshold
sq-1, sq-2, sq-3, sq-5 4 0.5927...[34][35] (square site)
sq-1,2, sq-2,3, sq-3,5 8 0.407...[34][35][37] (square matching) 0.25036834(6),[15] 0.2503685 [38]
sq-1,3 8 0.337[34][35] 0.2214995[38]
sq-2,5: 2NN+5NN 8 0.337[35]
hc-1,2,3: honeycomb-NN+2NN+3NN 12 0.300[36]
tri-1,2: triangular-NN+2NN 12 0.295[36]
tri-2,3: triangular-2NN+3NN 12 0.232020(36),[39]
sq-4: square-4NN 8 0.270...[35]
sq-1,5: square-NN+5NN 8 0.277[35]
sq-1,2,3: square-NN+2NN+3NN 12 0.292,[40] 0.290(5) [41] 0.289,[12]0.288,[34][35] 0.1522203[38]
sq-2,3,5: square-2NN+3NN+5NN 12 0.288[35]
sq-1,4: square-NN+4NN 12 0.236[35]
sq-2,4: square-2NN+4NN 12 0.225[35]
tri-4: triangular-4NN 12 0.192450(36)[39]
tri-1,2,3: triangular-NN+2NN+3NN 18 0.225,[40] 0.215,[12] 0.215459(36)[39]
sq-3,4: 3NN+4NN 12 0.221[35]
sq-1,2,5: NN+2NN+5NN 12 0.240[35] 0.13805374[38]
sq-1,3,5: NN+3NN+5NN 12 0.233[35]
sq-4,5: 4NN+5NN 12 0.199[35]
sq-1,2,4: NN+2NN+4NN 16 0.219[35]
sq-1,3,4: NN+3NN+4NN 16 0.208[35]
sq-2,3,4: 2NN+3NN+4NN 16 0.202[35]
sq-1,4,5: NN+4NN+5NN 16 0.187[35]
sq-2,4,5: 2NN+4NN+5NN 16 0.182[35]
sq-3,4,5: 3NN+4NN+5NN 16 0.179[35]
sq-1,2,3,5: NN+2NN+3NN+5NN 16 0.208[35] 0.1032177[38]
tri-4,5: 4NN+5NN 18 0.140250(36),[39]
sq-1,2,3,4: NN+2NN+3NN+4NN 20 0.196[35] 0.196724(10)[42] 0.0841509[38]
sq-1,2,4,5: NN+2NN+4NN+5NN 20 0.177[35]
sq-1,3,4,5: NN+3NN+4NN+5NN 20 0.172[35]
sq-2,3,4,5: 2NN+3NN+4NN+5NN 20 0.167[35]
sq-1,2,3,5,6: NN+2NN+3NN+5NN+6NN 20 0.0783110[38]
sq-1,2,3,4,5: NN+2NN+3NN+4NN+5NN 24 0.164[35]
tri-1,4,5: NN+4NN+5NN 24 0.131660(36)[39]
sq-1,...,6: NN+...+6NN 28 0.142[12] 0.0558493[38]
tri-2,3,4,5: 2NN+3NN+4NN+5NN 30 0.117460(36)[39]
tri-1,2,3,4,5: NN+2NN+3NN+4NN+5NN
36 0.115,[12] 0.115740(36)[39]
sq-1,...,7: NN+...+7NN 36 0.113[12] 0.04169608[38]
square: square distance ≤ 4 40 0.105(5)[41]
sq-(1,...,8: NN+..+8NN 44 0.095765(5)[42] 0.095[32]
sq-1,...,9: NN+..+9NN 48 0.086 [12] 0.02974268[38]
sq-1,...,11: NN+...+11NN 60 0.0230119[38]
sq-1,...,32: NN+...+32NN 224 0.0053050415(33)[38] 708 15 1.102 812(3)
sq-1,...,86: NN+...+86NN (r≤15) 708 0.001557644(4)[43]
sq-1,...,141: NN+...+141NN (r≤${\displaystyle {\sqrt {389}}}$ ) 1224 0.000880188(90)[38]
sq-1,...,185: NN+...+185NN (r≤23) 1652 0.000645458(4)[43]
sq-1,...,317: NN+...+317NN (r≤31) 3000 0.000349601(3)[43]
sq-1,...,413: NN+...+413NN (r≤${\displaystyle {\sqrt {1280}}}$ ) 4016 0.0002594722(11)[38]
square: square distance ≤ 6 84 0.049(5)[41]
square: square distance ≤ 8 144 0.028(5)[41]
square: square distance ≤ 10 220 0.019(5)[41]
2x2 overlapping squares* 0.58365(2) [42]
3x3 overlapping squares* 0.59586(2) [42]

Here NN = nearest neighbor, 2NN = second nearest neighbor (or next nearest neighbor), 3NN = third nearest neighbor (or next-next nearest neighbor), etc. These are also called 2N, 3N, 4N respectively in some papers [34].

• For overlapping squares, ${\displaystyle p_{c}}$ (site) given here is the net fraction of sites occupied ${\displaystyle \phi _{c}}$  similar to the ${\displaystyle \phi _{c}}$  in continuum percolation. The case of a 2×2 system is equivalent to percolation of a square lattice NN+2NN+3NN+4NN or sq-1,2,3,4 with threshold ${\displaystyle 1-(1-\phi _{c})^{1/4}=0.196724(10)\ldots }$  with ${\displaystyle \phi _{c}=0.58365(2)}$ [42]. The 3×3 system corresponds to sq-1,2,3,4,5,6,7,8 with z=44 and ${\displaystyle p_{c}=1-(1-\phi _{c})^{1/9}=0.095765(5)\ldots }$ . For larger overlapping squares, see [42].

### Approximate formulas for thresholds of Archimedean lattices

Lattice z Site percolation threshold Bond percolation threshold
(3, 122 ) 3
(4, 6, 12) 3
(4, 82) 3 0.676835..., 4p3 + 3p4 − 6 p5 − 2 p6 = 1[44]
honeycomb (63) 3
kagome (3, 6, 3, 6) 4 0.524430..., 3p2 + 6p3 − 12 p4+ 6 p5p6 = 1[45]
(3, 4, 6, 4) 4
square (44) 4 1/2 (exact)
(34,6 ) 5 0.434371..., 12p3 + 36p4 − 21p5 − 327 p6 + 69p7 + 2532p8 − 6533 p9

+ 8256 p10 − 6255p11 + 2951p12 − 837 p13 + 126 p14 − 7p15 = 1[citation needed]

snub square, puzzle (32, 4, 3, 4 ) 5
(33, 42) 5
triangular (36) 6 1/2 (exact)

### Site-bond percolation in 2D

Site bond percolation (both thresholds apply simultaneously to one system).

Square lattice:

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
square 4 4 0.615185(15)[46] 0.95
0.667280(15)[46] 0.85
0.732100(15)[46] 0.75
0.75 0.726195(15)[46]
0.815560(15)[46] 0.65
0.85 0.615810(30)[46]
0.95 0.533620(15)[46]

Honeycomb (hexagonal) lattice:

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
honeycomb 3 3 0.7275(5)[47] 0.95
0. 0.7610(5)[47] 0.90
0.7986(5)[47] 0.85
0.80 0.8481(5)[47]
0.8401(5)[47] 0.80
0.85 0.7890(5)[47]
0.90 0.7377(5)[47]
0.95 0.6926(5)[47]

* For more values, see An Investigation of site-bond percolation[47]

Approximate formula for a honeycomb lattice

Lattice z ${\displaystyle {\overline {z}}}$  Threshold Notes
(63) honeycomb 3 3 ${\displaystyle p_{b}p_{s}[1-({\sqrt {p_{bc}}}/(3-p_{bc}))({\sqrt {p_{b}}}-{\sqrt {p_{bc}}})]=p_{bc}}$ , When equal: ps = pb = 0.82199 approximate formula, ps = site prob., pb = bond prob., pbc = 1 − 2 sin (π/18)[16], exact at ps=1, pb=pbc.

### Archimedean duals (Laves lattices)

Laves lattices are the duals to the Archimedean lattices. Drawings from.[3] See also Uniform tilings.

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
Cairo pentagonal

D(32,4,3,4)=(2/3)(53)+(1/3)(54)

3,4 3⅓ 0.6501834(2),[8] 0.650184(5)[3] 0.585863... = 1 − pcbond(32,4,3,4)
Pentagonal D(33,42)=(1/3)(54)+(2/3)(53) 3,4 3⅓ 0.6470471(2),[8] 0.647084(5),[3] 0.6471(6)[33] 0.580358... = 1 − pcbond(33,42), 0.5800(6)[33]
D(34,6)=(1/5)(46)+(4/5)(43) 3,6 3 3/5 0.639447[3] 0.565694... = 1 − pcbond(34,6 )
dice, rhombille tiling

D(3,6,3,6) = (1/3)(46) + (2/3)(43)

3,6 4 0.5851(4),[48] 0.585040(5)[3] 0.475595... = 1 − pcbond(3,6,3,6 )
ruby dual

D(3,4,6,4) = (1/6)(46) + (2/6)(43) + (3/6)(44)

3,4,6 4 0.582410(5)[3] 0.475167... = 1 − pcbond(3,4,6,4 )
union jack, tetrakis square tiling

D(4,82) = (1/2)(34) + (1/2)(38)

4,8 6 1/2 0.323197... = 1 − pcbond(4,82 )
bisected hexagon,[49] cross dual

D(4,6,12)= (1/6)(312)+(2/6)(36)+(1/2)(34)

4,6,12 6 1/2 0.306266... = 1 − pcbond(4,6,12)
asanoha (hemp leaf)[50]

D(3, 122)=(2/3)(33)+(1/3)(312)

3,12 6 1/2 0.259579... = 1 − pcbond(3, 122)

### 2-uniform lattices

Top 3 lattices: #13 #12 #36
Bottom 3 lattices: #34 #37 #11

[2]

Top 2 lattices: #35 #30
Bottom 2 lattices: #41 #42

[2]

Top 4 lattices: #22 #23 #21 #20
Bottom 3 lattices: #16 #17 #15

[2]

Top 2 lattices: #31 #32
Bottom lattice: #33

[2]

# Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
41 (1/2)(3,4,3,12) + (1/2)(3, 122) 4,3 3.5 0.7680(2)[51] 0.67493252(36)[citation needed]
42 (1/3)(3,4,6,4) + (2/3)(4,6,12) 4,3 3​13 0.7157(2)[51] 0.64536587(40)[citation needed]
36 (1/7)(36) + (6/7)(32,4,12) 6,4 4 ​27 0.6808(2)[51] 0.55778329(40)[citation needed]
15 (2/3)(32,62) + (1/3)(3,6,3,6) 4,4 4 0.6499(2)[51] 0.53632487(40)[citation needed]
34 (1/7)(36) + (6/7)(32,62) 6,4 4 ​27 0.6329(2)[51] 0.51707873(70)[citation needed]
16 (4/5)(3,42,6) + (1/5)(3,6,3,6) 4,4 4 0.6286(2)[51] 0.51891529(35)[citation needed]
17 (4/5)(3,42,6) + (1/5)(3,6,3,6)* 4,4 4 0.6279(2)[51] 0.51769462(35)[citation needed]
35 (2/3)(3,42,6) + (1/3)(3,4,6,4) 4,4 4 0.6221(2)[51] 0.51973831(40)[citation needed]
11 (1/2)(34,6) + (1/2)(32,62) 5,4 4.5 0.6171(2)[51] 0.48921280(37)[citation needed]
37 (1/2)(33,42) + (1/2)(3,4,6,4) 5,4 4.5 0.5885(2)[51] 0.47229486(38)[citation needed]
30 (1/2)(32,4,3,4) + (1/2)(3,4,6,4) 5,4 4.5 0.5883(2)[51] 0.46573078(72)[citation needed]
23 (1/2)(33,42) + (1/2)(44) 5,4 4.5 0.5720(2)[51] 0.45844622(40)[citation needed]
22 (2/3)(33,42) + (1/3)(44) 5,4 4 ​23 0.5648(2)[51] 0.44528611(40)[citation needed]
12 (1/4)(36) + (3/4)(34,6) 6,5 5 ​14 0.5607(2)[51] 0.41109890(37)[citation needed]
33 (1/2)(33,42) + (1/2)(32,4,3,4) 5,5 5 0.5505(2)[51] 0.41628021(35)[citation needed]
32 (1/3)(33,42) + (2/3)(32,4,3,4) 5,5 5 0.5504(2)[51] 0.41549285(36)[citation needed]
31 (1/7)(36) + (6/7)(32,4,3,4) 6,5 5 ​17 0.5440(2)[51] 0.40379585(40)[citation needed]
13 (1/2)(36) + (1/2)(34,6) 6,5 5.5 0.5407(2)[51] 0.38914898(35)[citation needed]
21 (1/3)(36) + (2/3)(33,42) 6,5 5 ​13 0.5342(2)[51] 0.39491996(40)[citation needed]
20 (1/2)(36) + (1/2)(33,42) 6,5 5.5 0.5258(2)[51] 0.38285085(38)[citation needed]

### Inhomogeneous 2-uniform lattice

2-uniform lattice #37

This figure shows something similar to the 2-uniform lattice #37, except the polygons are not all regular—there is a rectangle in the place of the two squares—and the size of the polygons is changed. This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius. The two squares in the 2-uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition. The lattice is shown by black edges, and the dual lattice by red dashed lines. The green circles show the isoradial constraint on both the original and dual lattices. The yellow polygons highlight the three types of polygons on the lattice, and the pink polygons highlight the two types of polygons on the dual lattice. The lattice has vertex types (1/2)(33,42) + (1/2)(3,4,6,4), while the dual lattice has vertex types (1/15)(46)+(6/15)(42,52)+(2/15)(53)+(6/15)(52,4). The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice. These results follow from the isoradial condition[52] but also follow from applying the star-triangle transformation to certain stars on the honeycomb lattice. Finally, it can be generalized to having three different probabilities in the three different directions, p1, p2 and p3 for the long bonds, and 1 − p1, 1 − p2, and 1 − p3 for the short bonds, where p1, p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice.

### Thresholds on 2D bow-tie and martini lattices

To the left, center, and right are: the martini lattice, the martini-A lattice, the martini-B lattice. Below: the martini covering/medial lattice, same as the 2×2, 1×1 subnet for kagome-type lattices (removed).

Some other examples of generalized bow-tie lattices (a-d) and the duals of the lattices (e-h):

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
martini (3/4)(3,92)+(1/4)(93) 3 3 0.764826..., 1 + p4 − 3p3 = 0[53] 0.707107... = 1/2[54]
bow-tie (c) 3,4 3 1/7 0.672929..., 1 − 2p3 − 2p4 − 2p5 − 7p6 + 18p7 + 11p8 − 35p9 + 21p10 − 4p11 = 0[55]
bow-tie (d) 3,4 3⅓ 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0[55]
martini-A (2/3)(3,72)+(1/3)(3,73) 3,4 3⅓ 1/2[55] 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0[55]
bow-tie dual (e) 3,4 3⅔ 0.595482..., 1-pcbond (bow-tie (a))[55]
bow-tie (b) 3,4,6 3⅔ 0.533213..., 1 − p − 2p3 -4p4-4p5+156+ 13p7-36p8+19p9+ p10 + p11=0[55]
martini covering/medial (1/2)(33,9) + (1/2)(3,9,3,9) 4 4 0.707107... = 1/2[54] 0.57086651(33)[citation needed]

</ref>

martini-B (1/2)(3,5,3,52) + (1/2)(3,52) 3, 5 4 0.618034... = 2/(1 + 5), 1- p2p = 0[53][55] 1/2[54][55]
bow-tie dual (f) 3,4,8 4 2/5 0.466787..., 1 − pcbond (bow-tie (b))[55]
bow-tie (a) (1/2)(32,4,32,4) + (1/2)(3,4,3) 4,6 5 0.5472(2),[33] 0.5479148(7)[56] 0.404518..., 1 − p − 6p2 + 6p3p5 = 0[57][55]
bow-tie dual (h) 3,6,8 5 0.374543..., 1 − pcbond(bow-tie (d))[55]
bow-tie dual (g) 3,6,10 0.547... = pcsite(bow-tie(a)) 0.327071..., 1 − pcbond(bow-tie (c))[55]
martini dual (1/2)(33) + (1/2)(39) 3,9 6 1/2 0.292893... = 1 − 1/2[54]

### Thresholds on 2D covering, medial, and matching lattices

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
(4, 6, 12) covering/medial 4 4 pcbond(4, 6, 12) = 0.693731... 0.5593140(2),[8] 0.559315(1)[citation needed]
(4, 82) covering/medial, square kagome 4 4 pcbond(4,82) = 0.676803... 0.544798017(4),[8] 0.54479793(34)[citation needed]
(34, 6) medial 4 4 0.5247495(5)[8]
(3,4,6,4) medial 4 4 0.51276[8]
(32, 4, 3, 4) medial 4 4 0.512682929(8)[8]
(33, 42) medial 4 4 0.5125245984(9)[8]
square covering (non-planar) 6 6 1/2 0.3371(1)[58]
square matching lattice (non-planar) 8 8 1 − pcsite(square) = 0.407253... 0.25036834(6)[15]

(4, 6, 12) covering/medial lattice

(4, 82) covering/medial lattice

(3,122) covering/medial lattice (in light grey), equivalent to the kagome (2 × 2) subnet, and in black, the dual of these lattices.

(left) (3,4,6,4) covering/medial lattice, (right) (3,4,6,4) medial dual, shown in red, with medial lattice in light gray behind it. The pattern on the left appears in Iranian tilework [59] on the Western tomb tower, Kharraqan.

### Thresholds on 2D chimera non-planar lattices

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
K(2,2) 4 4 0.51253(14)[60] 0.44778(15)[60]
K(3,3) 6 6 0.43760(15)[60] 0.35502(15)[60]
K(4,4) 8 8 0.38675(7)[60] 0.29427(12)[60]
K(5,5) 10 10 0.35115(13)[60] 0.25159(13)[60]
K(6,6) 12 12 0.32232(13)[60] 0.21942(11)[60]
K(7,7) 14 14 0.30052(14)[60] 0.19475(9)[60]
K(8,8) 16 16 0.28103(11)[60] 0.17496(10)[60]

### Thresholds on subnet lattices

The 2 x 2, 3 x 3, and 4 x 4 subnet kagome lattices. The 2 × 2 subnet is also known as the "triangular kagome" lattice.[61]

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
checkerboard – 2 × 2 subnet 4,3 0.596303(1)[62]
checkerboard – 4 × 4 subnet 4,3 0.633685(9)[62]
checkerboard – 8 × 8 subnet 4,3 0.642318(5)[62]
checkerboard – 16 × 16 subnet 4,3 0.64237(1)[62]
checkerboard – 32 × 32 subnet 4,3 0.64219(2)[62]
checkerboard – ${\displaystyle \infty }$  subnet 4,3 0.642216(10)[62]
kagome – 2 × 2 subnet = (3, 122) covering/medial 4 pcbond (3, 122) = 0.74042077... 0.600861966960(2),[8] 0.6008624(10),[16] 0.60086193(3)[6]
kagome – 3 × 3 subnet 4 0.6193296(10),[16] 0.61933176(5),[6] 0.61933044(32)[citation needed]
kagome – 4 × 4 subnet 4 0.625365(3),[16] 0.62536424(7)[6]
kagome – ${\displaystyle \infty }$  subnet 4 0.628961(2)[16]
kagome – (1 × 1):(2 × 2) subnet = martini covering/medial 4 pcbond(martini) = 1/2 = 0.707107... 0.57086648(36)[citation needed]
kagome – (1 × 1):(3 × 3) subnet 4,3 0.728355596425196...[6] 0.58609776(37)[citation needed]
kagome – (1 × 1):(4 × 4) subnet 0.738348473943256...[6]
kagome – (1 × 1):(5 × 5) subnet 0.743548682503071...[6]
kagome – (1 × 1):(6 × 6) subnet 0.746418147634282...[6]
kagome – (2 × 2):(3 × 3) subnet 0.61091770(30)[citation needed]
triangular – 2 × 2 subnet 6,4 0.471628788[62]
triangular – 3 × 3 subnet 6,4 0.509077793[62]
triangular – 4 × 4 subnet 6,4 0.524364822[62]
triangular – 5 × 5 subnet 6,4 0.5315976(10)[62]
triangular – ${\displaystyle \infty }$  subnet 6,4 0.53993(1)[62]

### Thresholds of random sequentially adsorbed objects

(For more results and comparison to the jamming density, see Random sequential adsorption)

system z Site threshold
dimers on a honeycomb lattice 3 0.69,[63] 0.6653 [64]
dimers on a triangular lattice 6 0.4872(8),[63] 0.4873,[64] 0.5157(2) [65]
linear 4-mers on a triangular lattice 6 0.5220(2)[65]
linear 8-mers on a triangular lattice 6 0.5281(5)[65]
linear 12-mers on a triangular lattice 6 0.5298(8)[65]
linear 16-mers on a triangular lattice 6 0.5328(7)[65]
linear 32-mers on a triangular lattice 6 0.5407(6)[65]
linear 64-mers on a triangular lattice 6 0.5455(4)[65]
linear 80-mers on a triangular lattice 6 0.5500(6)[65]
linear k ${\displaystyle \longrightarrow \infty }$  on a triangular lattice 6 0.582(9)[65]
dimers and 5% impurities, triangular lattice 6 0.4832(7)[66]
parallel dimers on a square lattice 4 0.5863[67]
dimers on a square lattice 4 0.5617,[67] 0.5618(1),[68] 0.562,[69] 0.5713[64]
linear 3-mers on a square lattice 4 0.528[69]
3-site 120° angle, 5% impurities, triangular lattice 6 0.4574(9)[66]
3-site triangles, 5% impurities, triangular lattice 6 0.5222(9)[66]
linear trimers and 5% impurities, triangular lattice 6 0.4603(8)[66]
linear 4-mers on a square lattice 4 0.504[69]
linear 5-mers on a square lattice 4 0.490[69]
linear 6-mers on a square lattice 4 0.479[69]
linear 8-mers on a square lattice 4 0.474,[69] 0.4697(1)[68]
linear 10-mers on a square lattice 4 0.469[69]
linear 16-mers on a square lattice 4 0.4639(1)[68]
linear 32-mers on a square lattice 4 0.4747(2)[68]

The threshold gives the fraction of sites occupied by the objects when site percolation first takes place (not at full jamming). For longer dimers see Ref. [70]

### Thresholds of full dimer coverings of two dimensional lattices

Here, we are dealing with networks that are obtained by covering a lattice with dimers, and then consider bond percolation on the remaining bonds. In discrete mathematics, this problem is known as the 'perfect matching' or the 'dimer covering' problem.

system z Bond threshold
Parallel covering, square lattice 6 0.381966...[71]
Shifted covering, square lattice 6 0.347296...[71]
Staggered covering, square lattice 6 0.376825(2)[71]
Random covering, square lattice 6 0.367713(2)[71]
Parallel covering, triangular lattice 10 0.237418...[71]
Staggered covering, triangular lattice 10 0.237497(2)[71]
Random covering, triangular lattice 10 0.235340(1)[71]

### Thresholds of polymers (random walks) on a square lattice

System is composed of ordinary (non-avoiding) random walks of length l on the square lattice.[72]

l (polymer length) z Bond percolation
1 4 0.5(exact)[73]
2 4 0.47697(4)[73]
4 4 0.44892(6)[73]
8 4 0.41880(4)[73]

### Thresholds of self-avoiding walks of length k added by random sequential adsorption

k z Site thresholds Bond thresholds
1 4 0.593(2)[74] 0.5009(2)[74]
2 4 0.564(2)[74] 0.4859(2)[74]
3 4 0.552(2)[74] 0.4732(2)[74]
4 4 0.542(2)[74] 0.4630(2)[74]
5 4 0.531(2)[74] 0.4565(2)[74]
6 4 0.522(2)[74] 0.4497(2)[74]
7 4 0.511(2)[74] 0.4423(2)[74]
8 4 0.502(2)[74] 0.4348(2)[74]
9 4 0.493(2)[74] 0.4291(2)[74]
10 4 0.488(2)[74] 0.4232(2)[74]
11 4 0.482(2)[74] 0.4159(2)[74]
12 4 0.476(2)[74] 0.4114(2)[74]
13 4 0.471(2)[74] 0.4061(2)[74]
14 4 0.467(2)[74] 0.4011(2)[74]
15 4 0.4011(2)[74] 0.3979(2)[74]

### Thresholds on 2D inhomogeneous lattices

Lattice z Site percolation threshold Bond percolation threshold
bow-tie with p = 1/2 on one non-diagonal bond 3 0.3819654(5),[75] ${\displaystyle (3-{\sqrt {5}})/2}$ [44]

### Thresholds for 2D continuum models

2D continuum percolation with disks

2D continuum percolation with ellipses of aspect ratio 2
System Φc ηc nc
Disks of radius r 0.67634831(2),[76] 0.6763475(6),[77] 0.676339(4),[78] 0.6764(4),[79] 0.6766(5),[80] 0.676(2),[81] 0.679,[82] 0.674[83] 0.676,[84] 1.12808737(6),[76] 1.128085(2),[77] 1.128059(12),[78] 1.13,[85] 0.8[86] 1.43632545(8),[76] 1.436322(2),[77] 1.436289(16),[78] 1.436320(4),[87] 1.436323(3),[88] 1.438(2),[89] 1.216 (48)[90]
Ellipses, ε = 1.5 0.0043[82] 0.00431 2.059081(7)[88]
Ellipses, ε = 5/3 0.65[91] 1.05[91] 2.28[91]
Ellipses, aspect ratio ε = 2 0.6287945(12),[88] 0.63[91] 0.991000(3),[88] 0.99[91] 2.523560(8),[88] 2.5[91]
Ellipses, ε = 3 0.56[91] 0.82[91] 3.157339(8),[88] 3.14[91]
Ellipses, ε = 4 0.5[91] 0.69[91] 3.569706(8),[88] 3.5[91]
Ellipses, ε = 5 0.455,[82] 0.455,[84] 0.46[91] 0.607[82] 3.861262(12),[88] 3.86[82]
Ellipses, ε = 10 0.301,[82] 0.303,[84] 0.30[91] 0.358[82] 0.36[91] 4.590416(23)[88] 4.56,[82] 4.5[91]
Ellipses, ε = 20 0.178,[82] 0.17[91] 0.196[82] 5.062313(39),[88] 4.99[82]
Ellipses, ε = 50 0.081[82] 0.084[82] 5.393863(28),[88] 5.38[82]
Ellipses, ε = 100 0.0417[82] 0.0426[82] 5.513464(40),[88] 5.42[82]
Ellipses, ε = 200 0.021[91] 0.0212[91] 5.40[91]
Ellipses, ε = 1000 0.0043[82] 0.00431 5.624756(22),[88] 5.5
Superellipses, ε = 1, m = 1.5 0.671[84]
Superellipses, ε = 2.5, m = 1.5 0.599[84]
Superellipses, ε = 5, m = 1.5 0.469[84]
Superellipses, ε = 10, m = 1.5 0.322[84]
disco-rectangles, ε = 1.5 1.894 [87]
disco-rectangles, ε = 2 2.245 [87]
Aligned squares of side ${\displaystyle \ell }$  0.66675(2),[42] 0.66674349(3),[76] 0.66653(1),[92] 0.6666(4),[93] 0.668[83] 1.09884280(9),[76] 1.0982(3),[92] 1.098(1)[93] 1.09884280(9),[76] 1.0982(3),[92] 1.098(1)[93]
Randomly oriented squares 0.62554075(4),[76] 0.6254(2)[93] 0.625,[84] 0.9822723(1),[76] 0.9819(6)[93] 0.982278(14)[94] 0.9822723(1),[76] 0.9819(6)[93] 0.982278(14)[94]
Rectangles, ε = 1.1 0.624870(7) 0.980484(19) 1.078532(21)[94]
Rectangles, ε = 2 0.590635(5) 0.893147(13) 1.786294(26)[94]
Rectangles, ε = 3 0.5405983(34) 0.777830(7) 2.333491(22)[94]
Rectangles, ε = 4 0.4948145(38) 0.682830(8) 2.731318(30)[94]
Rectangles, ε = 5 0.4551398(31), 0.451[84] 0.607226(6) 3.036130(28)[94]
Rectangles, ε = 10 0.3233507(25), 0.319[84] 0.3906022(37) 3.906022(37)[94]
Rectangles, ε = 20 0.2048518(22) 0.2292268(27) 4.584535(54)[94]
Rectangles, ε = 50 0.09785513(36) 0.1029802(4) 5.149008(20)[94]
Rectangles, ε = 100 0.0523676(6) 0.0537886(6) 5.378856(60)[94]
Rectangles, ε = 200 0.02714526(34) 0.02752050(35) 5.504099(69)[94]
Rectangles, ε = 1000 0.00559424(6) 0.00560995(6) 5.609947(60)[94]
Sticks of length ${\displaystyle \ell }$  5.6372858(6),[76] 5.63726(2),[95] 5.63724(18) [96]
Power-law disks, x=2.05 0.993(1)[97] 4.90(1) 0.0380(6)
Power-law disks, x=2.25 0.8591(5)[97] 1.959(5) 0.06930(12)
Power-law disks, x = 2.5 0.7836(4)[97] 1.5307(17) 0.09745(11)
Power-law disks, x = 4 0.69543(6)[97] 1.18853(19) 0.18916(3)
Power-law disks, x = 5 0.68643(13)[97] 1.1597(3) 0.22149(8)
Power-law disks, x = 6 0.68241(8)[97] 1.1470(1) 0.24340(5)
Power-law disks, x=7 0.6803(8)[97] 1.140(6) 0.25933(16)
Power-law disks, x=8 0.67917(9)[97] 1.1368(5) 0.27140(7)
Power-law disks, x = 9 0.67856(12)[97] 1.1349(4) 0.28098(9)
Voids around disks of radius r 1 − Φc(disk) = 0.32355169(2),[76] 0.318(2),[98] 0.3261(6)[99]

${\displaystyle \eta _{c}=\pi r^{2}N/L^{2}}$  equals critical total area for disks, where N is the number of objects and L is the system size.

${\displaystyle 4\eta _{c}}$  gives the number of disk centers within the circle of influence (radius 2 r).

${\displaystyle r_{c}=L{\sqrt {\frac {\eta _{c}}{\pi N}}}}$  is the critical disk radius.

${\displaystyle \eta _{c}=\pi abN/L^{2}}$  for ellipses of semi-major and semi-minor axes of a and b, respectively. Aspect ratio ${\displaystyle \epsilon =a/b}$  with ${\displaystyle a>b}$ .

${\displaystyle \eta _{c}=\ell mN/L^{2}}$  for rectangles of dimensions ${\displaystyle \ell }$  and ${\displaystyle m}$ . Aspect ratio ${\displaystyle \epsilon =\ell /m}$  with ${\displaystyle \ell >m}$ .

${\displaystyle \eta _{c}=\pi xN/(4L^{2}(x-2))}$  for power-law distributed disks with ${\displaystyle {\hbox{Prob(radius}}\geq R)=R^{-x}}$ , ${\displaystyle R\geq 1}$ .

${\displaystyle \phi _{c}=1-e^{-\eta _{c}}}$  equals critical area fraction.

${\displaystyle n_{c}=\ell ^{2}N/L^{2}}$  equals number of objects of maximum length ${\displaystyle \ell =2a}$  per unit area.

For ellipses, ${\displaystyle n_{c}=(4\epsilon /\pi )\eta _{c}}$

For void percolation, ${\displaystyle \phi _{c}=e^{-\eta _{c}}}$  is the critical void fraction.

For more ellipse values, see [91][88]

For more rectangle values, see [94]

Both ellipses and rectangles belong to the superellipses, with ${\displaystyle |x/a|^{2m}+|y/b|^{2m}=1}$ . For more percolation values of superellipses, see [84].

For the monodisperse particle systems, the percolation thresholds of concave-shaped superdisks are obtained as seen in [100]

For binary dispersions of disks, see [101][77][102]

### Thresholds on 2D random and quasi-lattices

Voronoi diagram (solid lines) and its dual, the Delaunay triangulation (dotted lines), for a Poisson distribution of points

Delaunay triangulation

The Voronoi covering or line graph (dotted red lines) and the Voronoi diagram (black lines)

The Relative Neighborhood Graph (black lines)[103] superimposed on the Delaunay triangulation (black plus grey lines).

The Gabriel Graph, a subgraph of the Delaunay triangulation in which the circle surrounding each edge does not enclose any other points of the graph

Uniform Infinite Planar Triangulation, showing bond clusters. From[104]
Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
Relative neighborhood graph 2.5576 0.796(2)[103] 0.771(2)[103]
Voronoi tessellation 3 0.71410(2),[105] 0.7151*[51] 0.68,[106] 0.666931(5),[105] 0.6670(1)[107]
Voronoi covering/medial 4 0.666931(2)[105][107] 0.53618(2)[105]
Randomized kagome/square-octagon, fraction r=1/2 4 0.6599[13]
Penrose rhomb dual 4 0.6381(3)[48] 0.5233(2)[48]
Gabriel graph 4 0.6348(8),[108] 0.62[109] 0.5167(6),[108] 0.52[109]
Random-line tessellation, dual 4 0.586(2)[110]
Penrose rhomb 4 0.5837(3),[48] 0.58391(1)[111] 0.4770(2)[48]
Octagonal lattice, "chemical" links (Ammann–Beenker tiling) 4 0.585[112] 0.48[112]
Octagonal lattice, "ferromagnetic" links 5.17 0.543[112] 0.40[112]
Dodecagonal lattice, "chemical" links 3.63 0.628[112] 0.54[112]
Dodecagonal lattice, "ferromagnetic" links 4.27 0.617[112] 0.495[112]
Delaunay triangulation 6 1/2[113] 0.333069(2),[105] 0.3333(1)[107]
Uniform Infinite Planar Triangulation[114] 6 1/2 (23 – 1)/11 ≈ 0.2240[104][115]

*Theoretical estimate

### Thresholds on 2D correlated systems

Assuming power-law correlations ${\displaystyle C(r)\sim |r|^{-\alpha }}$

α Site percolation threshold Bond percolation threshold lattice square 3 0.561406(4)[116] square 2 0.550143(5)[116] square 0.1 0.508(4)[116]

### Thresholds on slabs

h is the thickness of the slab, h × ∞ × ∞. Boundary conditions (b.c.) refer to the top and bottom planes of the slab.

Lattice h z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
simple cubic (open b.c.) 2 5 5 0.47424,[117] 0.4756[118]
bcc (open b.c.) 2 0.4155[118]
hcp (open b.c.) 2 0.2828[118]
diamond (open b.c.) 2 0.5451[118]
simple cubic (open b.c.) 3 0.4264[118]
bcc (open b.c.) 3 0.3531[118]
bcc (periodic b.c.) 3 0.21113018(38)[119]
hcp (open b.c.) 3 0.2548[118]
diamond (open b.c.) 3 0.5044[118]
simple cubic (open b.c.) 4 0.3997,[117] 0.3998[118]
bcc (open b.c.) 4 0.3232[118]
bcc (periodic b.c.) 4 0.20235168(59)[119]
hcp (open b.c.) 4 0.2405[118]
diamond (open b.c.) 4 0.4842[118]
simple cubic (periodic b.c.) 5 6 6 0.278102(5)[119]
simple cubic (open b.c.) 6 0.3708[118]
simple cubic (periodic b.c.) 6 6 6 0.272380(2)[119]
bcc (open b.c.) 6 0.2948[118]
hcp (open b.c.) 6 0.2261[118]
diamond (open b.c.) 6 0.4642[118]
simple cubic (periodic b.c.) 7 6 6 0.3459514(12)[119] 0.268459(1)[119]
simple cubic (open b.c.) 8 0.3557,[117] 0.3565[118]
simple cubic (periodic b.c.) 8 6 6 0.265615(5)[119]
bcc (open b.c.) 8 0.2811[118]
hcp (open b.c.) 8 0.2190[118]
diamond (open b.c.) 8 0.4549[118]
simple cubic (open b.c.) 12 0.3411[118]
bcc (open b.c.) 12 0.2688[118]
hcp (open b.c.) 12 0.2117[118]
diamond (open b.c.) 12 0.4456[118]
simple cubic (open b.c.) 16 0.3219,[117] 0.3339[118]
bcc (open b.c.) 16 0.2622[118]
hcp (open b.c.) 16 0.2086[118]
diamond (open b.c.) 16 0.4415[118]
simple cubic (open b.c.) 32 0.3219,[117]
simple cubic (open b.c.) 64 0.3165,[117]
simple cubic (open b.c.) 128 0.31398,[117]

## Thresholds on 3D lattices

Lattice z ${\displaystyle {\overline {z}}}$  filling factor* filling fraction* Site percolation threshold Bond percolation threshold
(10,3)-a oxide (or site-bond)[120] 23 32 2.4 0.748713(22)[120] = (pc,bond(10,3) – a)1/2 = 0.742334(25)[121]
(10,3)-b oxide (or site-bond)[120] 23 32 2.4 0.233[122] 0.174 0.745317(25)[120] = (pc,bond(10,3) – b)1/2 = 0.739388(22)[121]
silicon dioxide (diamond site-bond)[120] 4,22 2 ⅔ 0.638683(35)[120]
Modified (10,3)-b[123] 32,2 2 ⅔ 0.627[123]
(8,3)-a[121] 3 3 0.577962(33)[121] 0.555700(22)[121]
(10,3)-a[121] gyroid[124] 3 3 0.571404(40)[121] 0.551060(37)[121]
(10,3)-b[121] 3 3 0.565442(40)[121] 0.546694(33)[121]
cubic oxide (cubic site-bond)[120] 6,23 3.5 0.524652(50)[120]
bcc dual 4 0.4560(6)[125] 0.4031(6)[125]
ice Ih 4 4 π 3 / 16 = 0.340087 0.147 0.433(11)[126] 0.388(10)[127]
diamond (Ice Ic) 4 4 π 3 / 16 = 0.340087 0.1462332 0.4299(8),[128] 0.4299870(4),[129] 0.426(+0.08,–0.02),[130] 0.4297(4) [131]

0.4301(4),[132] 0.428(4),[133] 0.425(15),[134] 0.425,[36][40] 0.436(12),[126]

0.3895892(5),[129] 0.3893(2),[132] 0.3893(3),[131]

0.388(5),[134] 0.3886(5),[128] 0.388(5)[133] 0.390(11),[127]

diamond dual 6 2/3 0.3904(5)[125] 0.2350(5)[125]
3D kagome (covering graph of the diamond lattice) 6 π 2 / 12 = 0.37024 0.1442 0.3895(2)[135] =pc(site) for diamond dual and pc(bond) for diamond lattice[125] 0.2709(6)[125]
Bow-tie stack dual 5⅓ 0.3480(4)[33] 0.2853(4)[33]
honeycomb stack 5 5 0.3701(2)[33] 0.3093(2)[33]
octagonal stack dual 5 5 0.3840(4)[33] 0.3168(4)[33]
pentagonal stack 5⅓ 0.3394(4)[33] 0.2793(4)[33]
kagome stack 6 6 0.453450 0.1517 0.3346(4)[33] 0.2563(2)[33]
fcc dual 42,8 5 1/3 0.3341(5)[125] 0.2703(3)[125]
simple cubic 6 6 π / 6 = 0.5235988 0.1631574 0.307(10),[134] 0.307,[36] 0.3115(5),[136] 0.3116077(2),[137] 0.311604(6),[138]

0.311605(5),[139] 0.311600(5),[140] 0.3116077(4),[141] 0.3116081(13),[142] 0.3116080(4),[143] 0.3116060(48),[144] 0.3116004(35),[145] 0.31160768(15)[129]

0.247(5),[134] 0.2479(4),[128] 0.2488(2),[146] 0.24881182(10),[137] 0.2488125(25),[147]

0.2488126(5),[148]

hcp dual 44,82 5 1/3 0.3101(5)[125] 0.2573(3)[125]
dice stack 5,8 6 π 3 / 9 = 0.604600 0.1813 0.2998(4)[33] 0.2378(4)[33]
bow-tie stack 7 7 0.2822(6)[33] 0.2092(4)[33]
Stacked triangular / simple hexagonal 8 8 0.26240(5),[149] 0.2625(2),[150] 0.2623(2)[33] 0.18602(2),[149] 0.1859(2)[33]
octagonal (union-jack) stack 6,10 8 0.2524(6)[33] 0.1752(2)[33]
bcc 8 8 0.243(10),[134] 0.243,[36]

0.2459615(10),[143] 0.2460(3),[151] 0.2464(7),[128] 0.2458(2)[132]

0.178(5),[134] 0.1795(3),[128] 0.18025(15),[146]

0.1802875(10),[148]

simple cubic with 3NN (same as bcc) 8 8 0.2455(1)[152], 0.2457(7)[153]
fcc 12 12 π / (3 2) = 0.740480 0.147530 0.195,[36] 0.198(3),[154] 0.1998(6),[128] 0.1992365(10),[143] 0.19923517(20),[129] 0.1994(2)[132] 0.1198(3)[128] 0.1201635(10)[148]
hcp 12 12 π / (3 2) = 0.740480 0.147545 0.195(5),[134]

0.1992555(10)[155]

0.1201640(10)[155]

0.119(2)[134]

La2−x Srx Cu O4 12 12 0.19927(2)[156]
simple cubic with 2NN (same as fcc) 12 12 0.1991(1)[152]
simple cubic with NN+4NN 12 12 0.15040(12)[157] 0.1068263(7)[158]
simple cubic with 3NN+4NN 14 14 0.20490(12)[157] 0.1012133(7)[158]
bcc NN+2NN (= sc(3,4) sc-3NN+4NN) 14 14 0.175,[36] 0.1686(20)[159] 0.0991(5)[159]
Nanotube fibers on FCC 14 14 0.1533(13)[160]
simple cubic with NN+3NN 14 14 0.1420(1)[152] 0.0920213(7)[158]
simple cubic with 2NN+4NN 18 18 0.15950(12)[157] 0.0751589(9)[158]
simple cubic with NN+2NN 18 18 0.137,[40] 0.136[161] 0.1372(1),[152] 0.13735(5)[citation needed] 0.0752326(6) [158]
fcc with NN+2NN (=sc-2NN+4NN) 18 18 0.136[36]
simple cubic with short-length correlation 6+ 6+ 0.126(1)[162]
simple cubic with NN+3NN+4NN 20 20 0.11920(12)[157] 0.0624379(9)[158]
simple cubic with 2NN+3NN 20 20 0.1036(1)[152] 0.0629283(7)[158]
simple cubic with NN+2NN+4NN 24 24 0.11440(12)[157] 0.0533056(6)[158]
simple cubic with 2NN+3NN+4NN 26 26 0.11330(12)[157] 0.0474609(9)
simple cubic with NN+2NN+3NN 26 26 0.097,[36] 0.0976(1),[152] 0.0976445(10)[citation needed] 0.0497080(10)[158]
bcc with NN+2NN+3NN 26 26 0.095[40]
simple cubic with NN+2NN+3NN+4NN 32 32 0.10000(12)[157] 0.0392312(8)[158]
fcc with NN+2NN+3NN 42 42 0.061,[40] 0.0610(5)[161]
fcc with NN+2NN+3NN+4NN 54 54 0.0500(5)[161]

Filling factor = fraction of space filled by touching spheres at every lattice site (for systems with uniform bond length only). Also called Atomic Packing Factor.

Filling fraction (or Critical Filling Fraction) = filling factor * pc(site).

NN = nearest neighbor, 2NN = next-nearest neighbor, 3NN = next-next-nearest neighbor, etc.

Question: the bond thresholds for the hcp and fcc lattice agree within the small statistical error. Are they identical, and if not, how far apart are they? Which threshold is expected to be bigger? Similarly for the ice and diamond lattices. See [163]

System polymer Φc
percolating excluded volume of athermal polymer matrix (bond-fluctuation model on cubic lattice) 0.4304(3)[164]

### Dimer percolation in 3D

System Site percolation threshold Bond percolation threshold
Simple cubic 0.2555(1)[165]

### Thresholds for 3D continuum models

All overlapping except for jammed spheres and polymer matrix.

System Φc ηc
Spheres of radius r 0.289,[166] 0.293,[167] 0.286,[168] 0.295.[83] 0.2895(5),[169] 0.28955(7),[170] 0.2896(7),[171] 0.289573(2),[172] 0.2896,[173] 0.2854[174] 0.3418(7),[169] 0.341889(3),[172] 0.3360,[174]

0.34189(2),[92] [corrected]

Oblate ellipsoids with major radius r and aspect ratio 4/3 0.2831[174] 0.3328[174]
Prolate ellipsoids with minor radius r and aspect ratio 3/2 0.2757,[173] 0.2795[174] 0.3278[174]
Oblate ellipsoids with major radius r and aspect ratio 2 0.2537,[173] 0.2629[174] 0.3050[174]
Prolate ellipsoids with minor radius r and aspect ratio 2 0.2537,[173] 0.2618,[174] 0.25(2)[175] 0.3035,[174] 0.29(3)[175]
Oblate ellipsoids with major radius r and aspect ratio 3 0.2289[174] 0.2599[174]
Prolate ellipsoids with minor radius r and aspect ratio 3 0.2033,[173] 0.2244,[174] 0.20(2)[175] 0.2541,[174] 0.22(3)[175]
Oblate ellipsoids with major radius r and aspect ratio 4 0.2003[174] 0.2235[174]
Prolate ellipsoids with minor radius r and aspect ratio 4 0.1901,[174] 0.16(2)[175] 0.2108,[174] 0.17(3)[175]
Oblate ellipsoids with major radius r and aspect ratio 5 0.1757[174] 0.1932[174]
Prolate ellipsoids with minor radius r and aspect ratio 5 0.1627,[174] 0.13(2)[175] 0.1776,[174] 0.15(2)[175]
Oblate ellipsoids with major radius r and aspect ratio 10 0.0895,[173] 0.1058[174] 0.1118[174]
Prolate ellipsoids with minor radius r and aspect ratio 10 0.0724,[173] 0.08703,[174] 0.07(2)[175] 0.09105,[174] 0.07(2)[175]
Oblate ellipsoids with major radius r and aspect ratio 100 0.01248[174] 0.01256[174]
Prolate ellipsoids with minor radius r and aspect ratio 100 0.006949[174] 0.006973[174]
Oblate ellipsoids with major radius r and aspect ratio 1000 0.001275[174] 0.001276[174]
Oblate ellipsoids with major radius r and aspect ratio 2000 0.000637[174] 0.000637[174]
Spherocylinders with H/D = 1 0.2439(2)[171]
Spherocylinders with H/D = 4 0.1345(1)[171]
Spherocylinders with H/D = 10 0.06418(20)[171]
Spherocylinders with H/D = 50 0.01440(8)[171]
Spherocylinders with H/D = 100 0.007156(50)[171]
Spherocylinders with H/D = 200 0.003724(90)[171]
Aligned cylinders 0.2819(2)[176] 0.3312(1)[176]
Aligned cubes of side ${\displaystyle \ell =2a}$  0.2773(2)[93] 0.27727(2),[42] 0.27730261(79)[144] 0.3247(3),[92] 0.3248(3),[93] 0.32476(4)[176] 0.324766(1)[144]
Randomly oriented icosahedra 0.3030(5)[177]
Randomly oriented dodecahedra 0.2949(5)[177]
Randomly oriented octahedra 0.2514(6)[177]
Randomly oriented cubes of side ${\displaystyle \ell =2a}$  0.2168(2)[93] 0.2174,[173] 0.2444(3),[93] 0.2443(5)[177]
Randomly oriented tetrahedra 0.1701(7)[177]
Randomly oriented disks of radius r (in 3D) 0.9614(5)[178]
Randomly oriented square plates of side ${\displaystyle {\sqrt {\pi }}r}$  0.8647(6)[178]
Randomly oriented triangular plates of side ${\displaystyle {\sqrt {2\pi }}/3^{1/4}r}$  0.7295(6)[178]
Voids around disks of radius r 22.86(2)[179]
Voids around oblate ellipsoids of major radius r and aspect ratio 10 15.42(1)[179]
Voids around oblate ellipsoids of major radius r and aspect ratio 2 6.478(8)[179]
Voids around hemispheres 0.0455(6)[180]
Voids around aligned tetrahedra 0.0605(6)[181]
Voids around rotated tetrahedra 0.0605(6)[181]
Voids around aligned cubes 0.036(1),[42] 0.0381(3)[181]
Voids around rotated cubes 0.0381(3)[181]
Voids around aligned octahedra 0.0407(3)[181]
Voids around rotated octahedra 0.0398(5)[181]
Voids around aligned dodecahedra 0.0356(3)[181]
Voids around rotated dodecahedra 0.0360(3)[181]
Voids around aligned icosahedra 0.0346(3)[181]
Voids around rotated icosahedra 0.0336(7)[181]
Voids around spheres 0.034(7),[182] 0.032(4),[183] 0.030(2),[98] 0.0301(3),[184] 0.0294,[185] 0.0300(3),[186] 0.0317(4),[187] 0.0308(5)[180] 0.0301(1)[181] 3.506(8),[186] 3.515(6)[179]
Jammed spheres (average z = 6) 0.183(3),[188] 0.1990,[189] see also contact network of jammed spheres 0.59(1)[188]

${\displaystyle \eta _{c}=(4/3)\pi r^{3}N/L^{3}}$  is the total volume (for spheres), where N is the number of objects and L is the system size.

${\displaystyle \phi _{c}=1-e^{-\eta _{c}}}$  is the critical volume fraction.

For disks and plates, these are effective volumes and volume fractions.

For void ("Swiss-Cheese" model), ${\displaystyle \phi _{c}=e^{-\eta _{c}}}$  is the critical void fraction.

For more results on void percolation around ellipsoids and elliptical plates, see [179].

For more ellipsoid percolation values see [174].

For spherocylinders, H/D is the ratio of the height to the diameter of the cylinder, which is then capped by hemispheres. Additional values are given in.[171]

For superballs, m is the deformation parameter, the percolation values are given in.,[190][191] In addition, the thresholds of concave-shaped superballs are also determined in [100]

For cuboid-like particles (superellipsoids), m is the deformation parameter, more percolation values are given in.[173]

### Thresholds on 3D random and quasi-lattices

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
Contact network of packed spheres 6 0.310(5),[188] 0.287(50),[192] 0.3116(3),[189]
Random-plane tessellation, dual 6 0.290(7)[193]
Icosahedral Penrose 6 0.285[194] 0.225[194]
Penrose w/2 diagonals 6.764 0.271[194] 0.207[194]
Penrose w/8 diagonals 12.764 0.188[194] 0.111[194]
Voronoi network 15.54 0.1453(20)[159] 0.0822(50)[159]

### Thresholds for 3D correlated percolation

Lattice z ${\displaystyle {\overline {z}}}$  Site percolation threshold Bond percolation threshold
Drilling percolation, simple cubic lattice 6 6 *0.633965(15),[195] 0.6339(5)

,[196] 6345(3)[197]

• In drilling percolation, p is the fraction of columns that have not been removed

## Thresholds in different dimensional spaces

### Continuum models in higher dimensions

d System Φc ηc
4 Overlapping hyperspheres 0.1223(4)[92] 0.1304(5)[92]
4 Aligned hypercubes 0.1132(5),[92] 0.1132348(17) [144] 0.1201(6)[92]
4 Voids around hyperspheres 0.00211(2)[99] 6.161(10)[99]
5 Overlapping hyperspheres 0.05443(7)[92]
5 Aligned hypercubes 0.04900(7),[92] 0.0481621(13),[144] 0.05024(7)[92]
5 Voids around hyperspheres 1.26(6)x10−4 [99] 8.98(4)[99]
6 Overlapping hyperspheres 0.02339(5)[92]
6 Aligned hypercubes 0.02082(8),[92] 0.0213479(10)[144] 0.02104(8)[92]
6 Voids around hyperspheres 8.0(6)x10−6 [99] 11.74(8)[99]
7 Overlapping hyperspheres 0.02339(5)[92]
7 Aligned hypercubes 0.00999(5),[92] 0.0097754(31)[144] 0.01004(5)[92]
8 Overlapping hyperspheres 0.004904(6)[92]
8 Aligned hypercubes 0.004498(5)[92]
9 Overlapping hyperspheres 0.002353(4)[92]
9 Aligned hypercubes 0.002166(4)[92]
10 Overlapping hyperspheres 0.001138(3)[92]
10 Aligned hypercubes 0.001058(4)[92]
11 Overlapping hyperspheres 0.0005530(3)[92]
11 Aligned hypercubes 0.0005160(3)[92]

${\displaystyle \eta _{c}=(\pi ^{d/2}/\Gamma [d/2+1])r^{d}N/L^{d}.}$

In 4d, ${\displaystyle \eta _{c}=(1/2)\pi ^{2}r^{4}N/L^{4}}$ .

In 5d, ${\displaystyle \eta _{c}=(8/15)\pi ^{2}r^{5}N/L^{5}}$ .

In 6d, ${\displaystyle \eta _{c}=(1/6)\pi ^{3}r^{6}N/L^{6}}$ .

${\displaystyle \phi _{c}=1-e^{-\eta _{c}}}$  is the critical volume fraction.

For void models, ${\displaystyle \phi _{c}=e^{-\eta _{c}}}$  is the critical void fraction, and ${\displaystyle \eta _{c}}$  is the total volume of the overlapping objects

### Thresholds on hypercubic lattices

d z Site thresholds Bond thresholds
4 8 0.198(1)[198] 0.197(6),[199] 0.1968861(14),[200] 0.196889(3),[201] 0.196901(5),[202] 0.19680(23),[203] 0.1968904(65),[144] 0.19688561(3)[204] 0.16005(15),[146] 0.1601314(13),[200] 0.160130(3),[201] 0.1601310(10),[147], 0.1601312(2)[205], 0.16013122(6)[204]
5 10 0.141(1),0.198(1)[198] 0.141(3),[199] 0.1407966(15),[200] 0.1407966(26),[144] 0.14079633(4)[204] 0.11819(4),[146] 0.118172(1),[200] 0.1181718(3)[147] 0.11817145(3)[204]
6 12 0.106(1),[198] 0.108(3),[199] 0.109017(2),[200] 0.1090117(30),[144] 0.109016661(8)[204] 0.0942(1),[206] 0.0942019(6),[200] 0.09420165(2)[204]
7 14 0.05950(5),[206] 0.088939(20),[207] 0.0889511(9),[200] 0.0889511(90),[144] 0.088951121(1),[204] 0.078685(30),[206] 0.0786752(3),[200] 0.078675230(2)[204]
8 16 0.0752101(5),[200] 0.075210128(1)[204] 0.06770(5),[206] 0.06770839(7),[200] 0.0677084181(3)[204]
9 18 0.0652095(3),[200] 0.0652095348(6)[204] 0.05950(5),[206] 0.05949601(5),[200] 0.0594960034(1)[204]
10 20 0.0575930(1),[200] 0.0575929488(4)[204] 0.05309258(4),[200] 0.0530925842(2)[204]
11 22 0.05158971(8),[200] 0.0515896843(2)[204] 0.04794969(1),[200] 0.04794968373(8)[204]
12 24 0.04673099(6),[200] 0.0467309755(1)[204] 0.04372386(1),[200] 0.04372385825(10)[204]
13 26 0.04271508(8),[200] 0.04271507960(10)[204] 0.04018762(1),[200] 0.04018761703(6)[204]

For thresholds on high dimensional hypercubic lattices, we have the asymptotic series expansions [199][208][209]

${\displaystyle p_{c}^{\mathrm {site} }(d)=\sigma ^{-1}+{\frac {3}{2}}\sigma ^{-2}+{\frac {15}{4}}\sigma ^{-3}+{\frac {83}{4}}\sigma ^{-4}+{\frac {6577}{48}}\sigma ^{-5}+{\frac {119077}{96}}\sigma ^{-6}+{\mathcal {O}}(\sigma ^{-7})}$

${\displaystyle p_{c}^{\mathrm {bond} }(d)=\sigma ^{-1}+{\frac {5}{2}}\sigma ^{-3}+{\frac {15}{2}}\sigma ^{-4}+57\sigma ^{-5}+{\frac {4855}{12}}\sigma ^{-6}+{\mathcal {O}}(\sigma ^{-7})}$

where ${\displaystyle \sigma =2d-1}$ .

### Thresholds in other higher-dimensional lattices

d lattice z Site thresholds Bond thresholds
4 diamond 5 0.2978(2)[132] 0.2715(3)[132]
4 kagome 8 0.2715(3)[135] 0.177(1) [132]
4 bcc 16 0.1037(3)[132] 0.074(1)[132], 0.074212(1)[205]
4 fcc 24 0.0842(3)[132], 0.08410(23)[203] 0.049(1)[132], 0.049517(1)[205]
4 cubic NN+2NN 32 0.06190(23)[203] 0.035827(1)[205]
4 cubic 3NN 32 0.04540(23)[203]
4 cubic NN+3NN 40 0.04000(23)[203]
4 cubic 2NN+3NN 58 0.03310(23)[203]
4 cubic NN+2NN+3NN 64 0.03190(23)[203]
5 diamond 6 0.2252(3)[132] 0.2084(4)[135]
5 kagome 10 0.2084(4)[135] 0.130(2)[132]
5 bcc 32 0.0446(4)[132] 0.033(1)[132]
5 fcc 40 0.0431(3)[132] 0.026(2)[132]
6 diamond 7 0.1799(5)[132] 0.1677(7)[135]
6 kagome 12 0.1677(7)[135]
6 fcc 60 0.0252(5)[132]
6 bcc 64 0.0199(5)[132]

### Thresholds in one-dimensional long-range percolation

Long-range bond percolation model. The lines represent the possible bonds with width decreasing as the connection probability decreases (left panel). An instance of the model together with the clusters generated (right panel).

Critical thresholds ${\displaystyle C_{c}}$  as a function of ${\displaystyle \sigma }$ .[210] The dotted line is the rigorous lower bound.[211]

In a one-dimensional chain we establish bonds between distinct sites ${\displaystyle i}$  and ${\displaystyle j}$  with probability ${\displaystyle p={\frac {C}{|i-j|^{1+\sigma }}}}$  decaying as a power-law with an exponent ${\displaystyle \sigma >0}$ . Percolation occurs[211][212] at a critical value ${\displaystyle C_{c}<1}$  for ${\displaystyle \sigma <1}$ . The numerically determined percolation thresholds are given by:[210]

${\displaystyle \sigma }$  ${\displaystyle C_{c}}$
0.1 0.047685(8)
0.2 0.093211(16)
0.3 0.140546(17)
0.4 0.193471(15)
0.5 0.25482(5)
0.6 0.327098(6)
0.7 0.413752(14)
0.8 0.521001(14)
0.9 0.66408(7)

### Thresholds on hyperbolic, hierarchical, and tree lattices

In these lattices there may be two percolation thresholds: the lower threshold is the probability above which infinite clusters appear, and the upper is the probability above which there is a unique infinite cluster.

Visualization of a triangular hyperbolic lattice {3,7} projected on the Poincaré disk (red bonds). Green bonds show dual-clusters on the {7,3} lattice[213]

Depiction of the non-planar Hanoi network HN-NP[214]
 Lattice z Site percolation threshold Bond percolation threshold ${\displaystyle {\overline {z}}}$ Lower Upper Lower Upper {3,7} hyperbolic 7 7 0.26931171(7),[215] 0.20[216] 0.73068829(7),[215] 0.73(2)[216] 0.20,[217] 0.1993505(5)[215] 0.37,[217] 0.4694754(8)[215] {3,8} hyperbolic 8 8 0.20878618(9)[215] 0.79121382(9)[215] 0.1601555(2)[215] 0.4863559(6)[215] {3,9} hyperbolic 9 9 0.1715770(1)[215] 0.8284230(1)[215] 0.1355661(4)[215] 0.4932908(1)[215] {4,5} hyperbolic 5 5 0.29890539(6)[215] 0.8266384(5)[215] 0.27,[217] 0.2689195(3)[215] 0.52,[217] 0.6487772(3) [215] {4,6} hyperbolic 6 6 0.22330172(3)[215] 0.87290362(7)[215] 0.20714787(9)[215] 0.6610951(2)[215] {4,7} hyperbolic 7 7 0.17979594(1)[215] 0.89897645(3)[215] 0.17004767(3)[215] 0.66473420(4)[215] {4,8} hyperbolic 8 8 0.151035321(9)[215] 0.91607962(7)[215] 0.14467876(3)[215] 0.66597370(3)[215] {4,9} hyperbolic 8 8 0.13045681(3)[215] 0.92820305(3)[215] 0.1260724(1)[215] 0.66641596(2)[215] {5,5} hyperbolic 5 5 0.26186660(5)[215] 0.89883342(7)[215] 0.263(10),[218] 0.25416087(3)[215] 0.749(10)[218] 0.74583913(3)[215] {7,3} hyperbolic 3 3 0.54710885(10)[215] 0.8550371(5),[215] 0.86(2)[216] 0.53,[217] 0.551(10),[218] 0.5305246(8)[215] 0.72,[217] 0.810(10),[218] 0.8006495(5)[215] {∞,3} Cayley tree 3 3 1/2 1/2[217] 1[217] Enhanced binary tree (EBT) 0.304(1),[219] 0.306(10),[218] (√13 − 3)/2 = 0.302776[220] 0.48,[217] 0.564(1),[219] 0.564(10),[218] 1/2[220] Enhanced binary tree dual 0.436(1),[219] 0.452(10)[218] 0.696(1),[219] 0.699(10)[218] Non-Planar Hanoi Network (HN-NP) 0.319445[214] 0.381996[214] Cayley tree with grandparents 8 0.158656326[221]

Note: {m,n} is the Schläfli symbol, signifying a hyperbolic lattice in which n regular m-gons meet at every vertex

For bond percolation on {P,Q}, we have by duality ${\displaystyle p_{c,\ell }(P,Q)+p_{c,u}(Q,P)=1}$ . For site percolation, ${\displaystyle p_{c,\ell }(3,Q)+p_{c,u}(3,Q)=1}$  because of the self-matching of triangulated lattices.

Cayley tree (Bethe lattice) with coordination number z: pc = 1 / (z − 1)

Cayley tree with a distribution of z with mean ${\displaystyle {\overline {z}}}$ , mean-square ${\displaystyle {\overline {z^{2}}}:}$  pc= ${\displaystyle {\overline {z}}/({\overline {z^{2}}}-{\overline {z}})}$ [222] (site or bond threshold)

### Thresholds for directed percolation

(1+1)D Kagome Lattice

(1+1)D Square Lattice

(1+1)D Triangular Lattice

(2+1)D SC Lattice

(2+1)D BCC Lattice
Lattice z Site percolation threshold Bond percolation threshold
(1+1)-d honeycomb 1.5 0.8399316(2),[223] 0.839933(5),[224] ${\displaystyle ={\sqrt {p_{c}({\mathrm {site} })}}}$  of (1+1)-d sq. 0.8228569(2),[223] 0.82285680(6)[223]
(1+1)-d kagome 2 0.7369317(2),[223] 0.73693182(4)[225] 0.6589689(2),[223] 0.65896910(8)[223]
(1+1)-d square, diagonal 2 0.705489(4),[226] 0.705489(4),[227] 0.70548522(4),[228] 0.70548515(20),[225]

0.7054852(3),[223]

0.644701(2),[229] 0.644701(1),[230] 0.644701(1),[226]

0.6447006(10),[224] 0.64470015(5),[231] 0.644700185(5),[228] 0.6447001(2),[223] 0.643(2)[232]

(1+1)-d triangular 3 0.595646(3),[226] 0.5956468(5),[231] 0.5956470(3)[223] 0.478018(2),[226] 0.478025(1),[231] 0.4780250(4)[223] 0.479(3)[232]
(2+1)-d simple cubic, diagonal planes 3 0.43531(1),[233] 0.43531411(10)[223] 0.382223(7),[233] 0.38222462(6)[223] 0.383(3)[232]
(2+1)-d square nn (= bcc) 4 0.3445736(3),[234] 0.344575(15)[235] 0.3445740(2)[223] 0.2873383(1),[236] 0.287338(3)[233] 0.28733838(4)[223] 0.287(3)[232]
(2+1)-d fcc 0.199(2))[232]
(3+1)-d hypercubic, diagonal 4 0.3025(10),[237] 0.30339538(5) [223] 0.26835628(5),[223] 0.2682(2)[232]
(3+1)-d cubic, nn 6 0.2081040(4)[234] 0.1774970(5)[147]
(3+1)-d bcc 8 0.160950(30),[235] 0.16096128(3)[223] 0.13237417(2)[223]
(4+1)-d hypercubic, diagonal 5 0.23104686(3)[223] 0.20791816(2),[223] 0.2085(2)[232]
(4+1)-d hypercubic, nn 8 0.1461593(2),[234] 0.1461582(3)[238] 0.1288557(5)[147]
(4+1)-d bcc 16 0.075582(17)[235]

0.0755850(3),[238] 0.07558515(1)[223]

0.063763395(5)[223]
(5+1)-d hypercubic, diagonal 6 0.18651358(2)[223] 0.170615155(5),[223] 0.1714(1) [232]
(5+1)-d hypercubic, nn 10 0.1123373(2)[234] 0.1016796(5)[147]
(5+1)-d hypercubic bcc 32 0.035967(23),[235] 0.035972540(3)[223] 0.0314566318(5)[223]
(6+1)-d hypercubic, diagonal 7 0.15654718(1)[223] 0.145089946(3),[223] 0.1458[232]
(6+1)-d hypercubic, nn 12 0.0913087(2)[234] 0.0841997(14)[147]
(6+1)-d hypercubic bcc 64 0.017333051(2)[223] 0.01565938296(10)[223]
(7+1)-d hypercubic, diagonal 8 0.135004176(10)[223] 0.126387509(3),[223] 0.1270(1) [232]
(7+1)-d hypercubic,nn 14 0.07699336(7)[234] 0.07195(5)[147]
(7+1)-d bcc 128 0.008 432 989(2)[223] 0.007 818 371 82(6)[223]

nn = nearest neighbors. For a (d + 1)-dimensional hypercubic system, the hypercube is in d dimensions and the time direction points to the 2D nearest neighbors.

### Exact critical manifolds of inhomogeneous systems

Inhomogeneous triangular lattice bond percolation[17]

${\displaystyle 1-p_{1}-p_{2}-p_{3}+p_{1}p_{2}p_{3}=0}$

Inhomogeneous honeycomb lattice bond percolation = kagome lattice site percolation[17]

${\displaystyle 1-p_{1}p_{2}-p_{1}p_{3}-p_{2}p_{3}+p_{1}p_{2}p_{3}=0}$

Inhomogeneous (3,12^2) lattice, site percolation[4][239]

${\displaystyle 1-3(s_{1}s_{2})^{2}+(s_{1}s_{2})^{3}=0,}$  or ${\displaystyle s_{1}s_{2}=1-2\sin(\pi /18)}$

Inhomogeneous union-jack lattice, site percolation with probabilities ${\displaystyle p_{1},p_{2},p_{3},p_{4}}$ [240]

${\displaystyle p_{3}=1-p_{1};\qquad p_{4}=1-p_{2}}$

Inhomogeneous martini lattice, bond percolation [55][241]${\displaystyle 1-(p_{1}p_{2}r_{3}+p_{2}p_{3}r_{1}+p_{1}p_{3}r_{2})-(p_{1}p_{2}r_{1}r_{2}+p_{1}p_{3}r_{1}r_{3}+p_{2}p_{3}r_{2}r_{3})+p_{1}p_{2}p_{3}(r_{1}r_{2}+r_{1}r_{3}+r_{2}r_{3})+}$  ${\displaystyle r_{1}r_{2}r_{3}(p_{1}p_{2}+p_{1}p_{3}+p_{2}p_{3})-2p_{1}p_{2}p_{3}r_{1}r_{2}r_{3}=0}$

Inhomogeneous martini lattice, site percolation. r = site in the star

${\displaystyle 1-r(p_{1}p_{2}+p_{1}p_{3}+p_{2}p_{3}-p_{1}p_{2}p_{3})=0}$

Inhomogeneous martini-A (3–7) lattice, bond percolation. Left side (top of "A" to bottom): ${\displaystyle r_{2},\ p_{1}}$ . Right side: ${\displaystyle r_{1},\ p_{2}}$ . Cross bond: ${\displaystyle \ r_{3}}$ .

${\displaystyle 1-p_{1}r_{2}-p_{2}r_{1}-p_{1}p_{2}r_{3}-p_{1}r_{1}r_{3}-p_{2}r_{2}r_{3}+p_{1}p_{2}r_{1}r_{3}+p_{1}p_{2}r_{2}r_{3}+p_{1}r_{1}r_{2}r_{3}+p_{2}r_{1}r_{2}r_{3}-p_{1}p_{2}r_{1}r_{2}r_{3}=0}$

Inhomogeneous martini-B (3–5) lattice, bond percolation

Inhomogeneous martini lattice with outside enclosing triangle of bonds, probabilities ${\displaystyle y,x,z}$  from inside to outside, bond percolation [241]${\displaystyle 1-3z+z^{3}-(1-z^{2})[3x^{2}y(1+y-y^{2})(1+z)+x^{3}y^{2}(3-2y)(1+2z)]=0}$

Inhomogeneous checkerboard lattice, bond percolation [45][75]

${\displaystyle 1-(p_{1}p_{2}+p_{1}p_{3}+p_{1}p_{4}+p_{2}p_{3}+p_{2}p_{4}+p_{3}p_{4})+p_{1}p_{2}p_{3}+p_{1}p_{2}p_{4}+p_{1}p_{3}p_{4}+p_{2}p_{3}p_{4}=0}$

Inhomogeneous bow-tie lattice, bond percolation[44][75]

${\displaystyle 1-(p_{1}p_{2}+p_{1}p_{3}+p_{1}p_{4}+p_{2}p_{3}+p_{2}p_{4}+p_{3}p_{4})+p_{1}p_{2}p_{3}+p_{1}p_{2}p_{4}+p_{1}p_{3}p_{4}+p_{2}p_{3}p_{4}-}$  ${\displaystyle u(1-p_{1}p_{2}-p_{3}p_{4}+p_{1}p_{2}p_{3}p_{4})=0}$

where ${\displaystyle p_{1},p_{2},p_{3},p_{4}}$  are the four bonds around the square and ${\displaystyle u}$  is the diagonal bond connecting the vertex between bonds ${\displaystyle p_{4},p_{1}}$  and ${\displaystyle p_{2},p_{3}}$ .

### For graphs

For random graphs not embedded in space the percolation threshold can be calculated exactly. For example, for random regular graphs where all nodes have the same degree k, pc=1/k. For Erdős–Rényi (ER) graphs with Poissonian degree distribution, pc=1/<k>.[242] The critical threshold was calculated exactly also for a network of interdependent ER networks.[243][244]

## References

1. ^ Kasteleyn, P. W.; Fortuin, C. M. (1969). "Phase transitions in lattice systems with random local properties". Journal of the Physical Society of Japan Supplement. 26: 11–14. Bibcode:1969PSJJS..26...11K.
2. =Grünbaum, Branko & Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman. ISBN 978-0-7167-1193-3.
3. Parviainen, Robert (2005). Connectivity Properties of Archimedean and Laves Lattices. Diva. 34. Uppsala Dissertations in Mathematics. p. 37. ISBN 978-91-506-1751-1.
4. Suding, P. N.; R. M. Ziff (1999). "Site percolation thresholds for Archimedean lattices". Physical Review E. 60 (1): 275–283. Bibcode:1999PhRvE..60..275S. doi:10.1103/PhysRevE.60.275. PMID 11969760.
5. Parviainen, Robert (2007). "Estimation of bond percolation thresholds on the Archimedean lattices". Journal of Physics A. 40 (31): 9253–9258. arXiv:0704.2098. Bibcode:2007JPhA...40.9253P. doi:10.1088/1751-8113/40/31/005.
6. Ding, Chengxiang; Zhe Fu. Wenan Guo; F. Y. Wu (2010). "Critical frontier for the Potts and percolation models on triangular-type and kagome-type lattices II: Numerical analysis". Physical Review E. 81 (6): 061111. arXiv:1001.1488. Bibcode:2010PhRvE..81f1111D. doi:10.1103/PhysRevE.81.061111. PMID 20866382.
7. ^ a b Scullard, C. R.; J. L. Jacobsen (2012). "Transfer matrix computation of generalised critical polynomials in percolation". arXiv:1209.1451 [cond-mat.stat-mech].
8. Jacobsen, J. L. (2014). "High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials". Journal of Physics A. 47 (13): 135001. arXiv:1401.7847. Bibcode:2014JPhA...47m5001G. doi:10.1088/1751-8113/47/13/135001.
9. ^ a b Jacobsen, Jesper L.; Christian R. Scullard (2013). "Critical manifolds, graph polynomials, and exact solvability" (PDF). StatPhys 25, Seoul, Korea July 21–26.
10. Scullard, Christian R.; Jesper Lykke Jacobsen (2020). "Bond percolation thresholds on Archimedean lattices from critical polynomial roots". Physical Review Research. 2: 012050. arXiv:1910.12376. doi:10.1103/PhysRevResearch.2.012050.
11. d'Iribarne, C.; G. Resigni; M. Resigni (1995). "Determination of site percolation transitions for 2D mosaics by means of the minimal spanning tree approach". Physics Letters A. 209: 95–98. doi:10.1016/0375-9601(95)00794-8.
12. d'Iribarne, C.; Rasigni, M.; Rasigni, G. (1999). "From lattice long-range percolation to the continuum one". Phys. Lett. A. 263 (1–2): 65–69. Bibcode:1999PhLA..263...65D. doi:10.1016/S0375-9601(99)00585-X.
13. ^ a b Schliecker, G.; C. Kaiser (1999). "Percolation on disordered mosaics". Physica A. 269 (2–4): 189–200. Bibcode:1999PhyA..269..189S. doi:10.1016/S0378-4371(99)00093-X.
14. ^ Djordjevic, Z. V.; H. E. Stanley; Alla Margolina (1982). "Site percolation threshold for honeycomb and square lattices". Journal of Physics A. 15 (8): L405–L412. Bibcode:1982JPhA...15L.405D. doi:10.1088/0305-4470/15/8/006.
15. Feng, Xiaomei; Youjin Deng; H. W. J. Blöte (2008). "Percolation transitions in two dimensions". Physical Review E. 78 (3): 031136. arXiv:0901.1370. Bibcode:2008PhRvE..78c1136F. doi:10.1103/PhysRevE.78.031136. PMID 18851022.
16. Ziff, R. M.; Hang Gu (2008). "Universal relation for critical percolation thresholds of kagome-class lattices". Cite journal requires |journal= (help)
17. Sykes, M. F.; J. W. Essam (1964). "Exact critical percolation probabilities for site and bond problems in two dimensions". Journal of Mathematical Physics. 5 (8): 1117–1127. Bibcode:1964JMP.....5.1117S. doi:10.1063/1.1704215.
18. ^ Ziff, R. M.; P. W. Suding (1997). "Determination of the bond percolation threshold for the kagome lattice". Journal of Physics A. 30 (15): 5351–5359. arXiv:cond-mat/9707110. Bibcode:1997JPhA...30.5351Z. doi:10.1088/0305-4470/30/15/021.
19. ^ Scullard, C. R. (2012). "Percolation critical polynomial as a graph invariant". Physical Review E. 86 (4): 1131. arXiv:1111.1061. Bibcode:2012PhRvE..86d1131S. doi:10.1103/PhysRevE.86.041131. PMID 23214553.
20. ^ a b Jacobsen, J. L. (2015). "Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley-Lieb algebras". Journal of Physics A. 48 (45): 454003. arXiv:1507.03027. Bibcode:2015JPhA...48S4003L. doi:10.1088/1751-8113/48/45/454003.
21. ^ Lin, Keh Ying; Wen Jong Ma (1983). "Two-dimensional Ising model on a ruby lattice". Journal of Physics A. 16 (16): 3895–3898. Bibcode:1983JPhA...16.3895L. doi:10.1088/0305-4470/16/16/027.
22. ^ Derrida, B.; D. Stauffer (1985). "Corrections to scaling and phenomenological renormalization for 2-dimensional percolation and lattice animal problems". J. Physique. 46 (45): 1623. doi:10.1051/jphys:0198500460100162300.
23. ^ Yang, Y.; S. Zhou.; Y. Li. (2013). "Square++: Making a connection game win-lose complementary and playing-fair". Entertainment Computing. 4 (2): 105–113. doi:10.1016/j.entcom.2012.10.004.
24. ^ Newman, M. E. J.; R. M. Ziff (2000). "Efficient Monte-Carlo algorithm and high-precision results for percolation". Physical Review Letters. 85 (19): 4104–7. arXiv:cond-mat/0005264. Bibcode:2000PhRvL..85.4104N. CiteSeerX 10.1.1.310.4632. doi:10.1103/PhysRevLett.85.4104. PMID 11056635.
25. ^ de Oliveira, P.M.C.; R. A. Nobrega, D. Stauffer. (2003). "Corrections to finite size scaling in percolation". Brazilian Journal of Physics. 33 (3): 616–618. arXiv:cond-mat/0308525. Bibcode:2003BrJPh..33..616O. doi:10.1590/S0103-97332003000300025.
26. ^ Lee, M. J. (2007). "Complementary algorithms for graphs and percolation". Physical Review E. 76 (2): 027702. arXiv:0708.0600. Bibcode:2007PhRvE..76b7702L. doi:10.1103/PhysRevE.76.027702. PMID 17930184.
27. ^ Lee, M. J. (2008). "Pseudo-random-number generators and the square site percolation threshold". Physical Review E. 78 (3): 031131. arXiv:0807.1576. Bibcode:2008PhRvE..78c1131L. doi:10.1103/PhysRevE.78.031131. PMID 18851017.
28. ^ Levenshteĭn, M. E.; B. I. Shklovskiĭ; M. S. Shur; A. L. Éfros (1975). "The relation between the critical exponents of percolation theory". Zh. Eksp. Teor. Fiz. 69: 386–392. Bibcode:1976JETP...42..197L.
29. ^ Dean, P.; N. F. Bird (1967). "Monte Carlo estimates of critical percolation probabilities". Proc. Camb. Phil. Soc. 63 (2): 477–479. Bibcode:1967PCPS...63..477D. doi:10.1017/s0305004100041438.
30. ^ Dean, P (1963). "A new Monte Carlo method for percolation problems on a lattice". Proc. Camb. Phil. Soc. 59∂malarg (2): 397–410. Bibcode:1963PCPS...59..397D. doi:10.1017/s0305004100037026.
31. ^ Betts, D. D. (1995). "A new two-dimensional lattice of coordination number five". Proc. Nova Scotian Inst. Sci. 40: 95–100.
32. ^ a b d'Iribarne, C.; G. Resigni; M. Resigni (1999). "Minimal spanning tree and percolation on mosaics: graph theory and percolation". J. Phys. A: Math. Gen. 32: 2611–2622. doi:10.1088/0305-4470/32/14/002.
33. van der Marck, S. C. (1997). "Percolation thresholds and universal formulas". Physical Review E. 55 (2): 1514–1517. Bibcode:1997PhRvE..55.1514V. doi:10.1103/PhysRevE.55.1514.
34. Malarz, K.; S. Galam (2005). "Square-lattice site percolation at increasing ranges of neighbor bonds". Physical Review E. 71 (1): 016125. arXiv:cond-mat/0408338. Bibcode:2005PhRvE..71a6125M. doi:10.1103/PhysRevE.71.016125. PMID 15697676.
35. Majewski, M.; K. Malarz (2007). "Square lattice site percolation thresholds for complex neighbourhoods". Acta Phys. Pol. B. 38 (38): 2191. arXiv:cond-mat/0609635. Bibcode:2007AcPPB..38.2191M.
36. Dalton, N. W.; C. Domb; M. F. Sykes (1964). "Dependence of critical concentration of a dilute ferromagnet on the range of interaction". Proc. Phys. Soc. 83 (3): 496–498. doi:10.1088/0370-1328/83/3/118.
37. ^ Collier, Andrew. "Percolation Threshold: Including Next-Nearest Neighbours".
38. Ouyang, Yunqing; Y. Deng; Henk W. J. Blöte (2018). "Equivalent-neighbor percolation models in two dimensions: Crossover between mean-field and short-range behavior". Phys. Rev. E. 98 (6): 062101. arXiv:1808.05812. Bibcode:2018PhRvE..98f2101O. doi:10.1103/PhysRevE.98.062101. S2CID 119328197.
39. Malarz, Krzysztof (2020). "Site percolation thresholds on triangular lattice with complex neighborhoods". arXiv:2006.15621 [cond-mat.stat-mech].
40. Domb, C.; N. W. Dalton (1966). "Crystal statistics with long-range forces I. The equivalent neighbour model". Proc. Phys. Soc. 89 (4): 859–871. Bibcode:1966PPS....89..859D. doi:10.1088/0370-1328/89/4/311.
41. Gouker, Mark; Family, Fereydoon (1983). "Evidence for classical critical behavior in long-range site percolation". Phys. Rev. B. 28 (3): 1449. Bibcode:1983PhRvB..28.1449G. doi:10.1103/PhysRevB.28.1449.
42. Koza, Zbigniew; Kondrat, Grzegorz; Suszczyński, Karol (2014). "Percolation of overlapping squares or cubes on a lattice". J. Stat. Mech.: Theory Exp. 2014 (11): P11005. arXiv:1606.07969. Bibcode:2014JSMTE..11..005K. doi:10.1088/1742-5468/2014/11/P11005. S2CID 118623466.
43. ^ a b c Deng, Youjin; Ouyang Yunqing; Henk W. J. Blöte (2019). "Medium-range percolation in two dimensions". J. Phys.: Conf. Ser. 1163 (1): 012001. Bibcode:2019JPhCS1163a2001D. doi:10.1088/1742-6596/1163/1/012001.
44. ^ a b c Scullard, C. R.; R. M. Ziff (2010). "Critical surfaces for general inhomogeneous bond percolation problems". J. Stat. Mech.: Theory Exp. 2010 (3): P03021. arXiv:0911.2686. Bibcode:2010JSMTE..03..021S. doi:10.1088/1742-5468/2010/03/P03021.
45. ^ a b Wu, F. Y. (1979). "Critical point of planar Potts models". Journal of Physics C. 12 (17): L645–L650. Bibcode:1979JPhC...12L.645W. doi:10.1088/0022-3719/12/17/002.
46. Hovi, J.-P.; A. Aharony (1996). "Scaling and universality in the spanning probability for percolation". Physical Review E. 53 (1): 235–253. Bibcode:1996PhRvE..53..235H. doi:10.1103/PhysRevE.53.235. PMID 9964253.
47. Tarasevich, Yuriy Yu; Steven C. van der Marck (1999). "An investigation of site-bond percolation on many lattices". Int. J. Mod. Phys. C. 10 (7): 1193–1204. arXiv:cond-mat/9906078. Bibcode:1999IJMPC..10.1193T. doi:10.1142/S0129183199000978.
48. Sakamoto, S.; F. Yonezawa and M. Hori (1989). "A proposal for the estimation of percolation thresholds in two-dimensional lattices". J. Phys. A. 22 (14): L699–L704. Bibcode:1989JPhA...22L.699S. doi:10.1088/0305-4470/22/14/009.
49. ^ Deng, Y.; Y. Huang, J. L. Jacobsen, J. Salas, and A. D. Sokal (2011). "Finite-temperature phase transition in a class of four-state Potts antiferromagnets". Physical Review Letters. 107 (15): 150601. arXiv:1108.1743. Bibcode:2011PhRvL.107o0601D. doi:10.1103/PhysRevLett.107.150601. PMID 22107278.CS1 maint: multiple names: authors list (link)
50. ^ Syozi, I (1972). "Transformation of Ising Models". In Domb, C.; Green, M. S. (eds.). Phase Transitions in Critical Phenomena. 1. Academic Press, London. pp. 270–329.
51. Neher, Richard; Mecke, Klaus and Wagner, Herbert (2008). "Topological estimation of percolation thresholds". Journal of Statistical Mechanics: Theory and Experiment. 2008 (1): P01011. arXiv:0708.3250. Bibcode:2008JSMTE..01..011N. doi:10.1088/1742-5468/2008/01/P01011.CS1 maint: multiple names: authors list (link)
52. ^ Grimmett, G.; Manolescu, I (2012). "Bond percolation on isoradial graphs". arXiv:1204.0505 [math.PR].
53. ^ a b Scullard, C. R. (2006). "Exact site percolation thresholds using a site-to-bond transformation and the star-triangle transformation". Physical Review E. 73 (1): 016107. arXiv:cond-mat/0507392. Bibcode:2006PhRvE..73a6107S. doi:10.1103/PhysRevE.73.016107. PMID 16486216.
54. ^ a b c d Ziff, R. M. (2006). "Generalized cell–dual-cell transformation and exact thresholds for percolation". Physical Review E. 73 (1): 016134. Bibcode:2006PhRvE..73a6134Z. doi:10.1103/PhysRevE.73.016134. PMID 16486243.
55. Scullard, C. R.; Robert M Ziff (2006). "Exact bond percolation thresholds in two dimensions". Journal of Physics A. 39 (49): 15083–15090. arXiv:cond-mat/0610813. Bibcode:2006JPhA...3915083Z. doi:10.1088/0305-4470/39/49/003.
56. ^ Ding, Chengxiang; Yancheng Wang; Yang Li (2012). "Potts and percolation models on bowtie lattices". Physical Review E. 86 (2): 021125. arXiv:1203.2244. Bibcode:2012PhRvE..86b1125D. doi:10.1103/PhysRevE.86.021125. PMID 23005740.
57. ^ Wierman, John (1984). "A bond percolation critical probability determination based on the star-triangle transformation". J. Phys. A: Math. Gen. 17 (7): 1525–1530. Bibcode:1984JPhA...17.1525W. doi:10.1088/0305-4470/17/7/020.
58. ^ Ziff, R. M.; Scullard, C. R. (2010). "Critical surfaces for general inhomogeneous bond percolation problems". J. Stat. Mech. 2010 (3): P03021. arXiv:0911.2686. Bibcode:2010JSMTE..03..021S. doi:10.1088/1742-5468/2010/03/P03021.
59. ^
60. Melchert, Oliver; Helmut G. Katzgraber; Mark A. Novotny (2016). "Site and bond percolation thresholds in Kn,n-based lattices: Vulnerability of quantum annealers to random qubit and coupler failures on Chimera topologies". Physical Review E. 93 (4): 042128. arXiv:1511.07078. Bibcode:2016PhRvE..93d2128M. doi:10.1103/PhysRevE.93.042128. PMID 27176275.
61. ^ Okubo, S.; M. Hayashi, S. Kimura, H. Ohta, M. Motokawa, H. Kikuchi and H. Nagasawa (1998). "Submillimeter wave ESR of triangular-kagome antiferromagnet Cu9X2(cpa)6 (X=Cl, Br)". Physica B. 246--247 (2): 553–556. Bibcode:1998PhyB..246..553O. doi:10.1016/S0921-4526(97)00985-X.CS1 maint: multiple names: authors list (link)
62. Haji Akbari, Amir; R. M. Ziff (2009). "Percolation in networks with voids and bottlenecks". Physical Review E. 79 (2): 021118. arXiv:0811.4575. Bibcode:2009PhRvE..79b1118H. doi:10.1103/PhysRevE.79.021118. PMID 19391717.
63. ^ a b Cornette, V.; A. J. Ramirez-Pastor; F. Nieto (2003). "Dependence of the percolation threshold on the size of the percolating species". Physica A. 327 (1): 71–75. Bibcode:2003PhyA..327...71C. doi:10.1016/S0378-4371(03)00453-9.
64. ^ a b c Lebrecht, W.; P. M. Centres; A. J. Ramirez-Pastor (2019). "Analytical approximation of the site percolation thresholds for monomers and dimers on two-dimensional lattices". Physica A. 516: 133–143. Bibcode:2019PhyA..516..133L. doi:10.1016/j.physa.2018.10.023.
65. Longone, Pablo; P.M. Centres; A. J. Ramirez-Pastor (2019). "Percolation of aligned rigid rods on two-dimensional triangular lattices". Physical Review E. 100 (5): 052104. arXiv:1906.03966. Bibcode:2019PhRvE.100e2104L. doi:10.1103/PhysRevE.100.052104. PMID 31870027.
66. ^ a b c d Budinski-Petkovic, Lj; I. Loncarevic; Z. M. Jacsik; and S. B. Vrhovac (2016). "Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities". J. Stat. Mech.: Th. Exp. 2016 (5): 053101. Bibcode:2016JSMTE..05.3101B. doi:10.1088/1742-5468/2016/05/053101.
67. ^ a b Cherkasova, V. A.; Yu. Yu. Tarasevich; N. I. Lebovka; and N.V. Vygornitskii (2010). "Percolation of the aligned dimers on a square lattice". Eur. Phys. J. B. 74 (2): 205–209. arXiv:0912.0778. Bibcode:2010EPJB...74..205C. doi:10.1140/epjb/e2010-00089-2.
68. ^ a b c d Leroyer, Y.; E. Pommiers (1994). "Monte Carlo analysis of percolation of line segments on a square lattice". Phys. Rev. B. 50 (5): 2795–2799. arXiv:cond-mat/9312066. Bibcode:1994PhRvB..50.2795L. doi:10.1103/PhysRevB.50.2795. PMID 9976520.
69. Vanderwalle, N.; S. Galam; M. Kramer (2000). "A new universality for random sequential deposition of needles". Eur. Phys. J. B. 14 (3): 407–410. arXiv:cond-mat/0004271. Bibcode:2000EPJB...14..407V. doi:10.1007/s100510051047.
70. ^ Kondrat, Grzegorz; Andrzej Pękalski (2001). "Percolation and jamming in random sequential adsorption of linear segments on a square lattice". Phys. Rev. E. 63 (5): 051108. arXiv:cond-mat/0102031. Bibcode:2001PhRvE..63e1108K. doi:10.1103/PhysRevE.63.051108. PMID 11414888.
71. Haji-Akbari, A.; Nasim Haji-Akbari; Robert M. Ziff (2015). "Dimer Covering and Percolation Frustration". Phys. Rev. E. 92 (3): 032134. arXiv:1507.04411. Bibcode:2015PhRvE..92c2134H. doi:10.1103/PhysRevE.92.032134. PMID 26465453.
72. ^ Zia, R. K. P.; W. Yong; B. Schmittmann (2009). "Percolation of a collection of finite random walks: a model for gas permeation through thin polymeric membranes". Journal of Mathematical Chemistry. 45: 58–64. doi:10.1007/s10910-008-9367-6.
73. ^ a b c d Wu, Yong; B. Schmittmann; R. K. P. Zia (2008). "Two-dimensional polymer networks near percolation". Journal of Physics A. 41 (2): 025008. Bibcode:2008JPhA...41b5004W. doi:10.1088/1751-8113/41/2/025004.
74. Cornette, V.; A.J. Ramirez-Pastor, F. Nieto (2003). "Two-dimensional polymer networks near percolation". European Physical Journal B. 36 (3): 397. Bibcode:2003EPJB...36..391C. doi:10.1140/epjb/e2003-00358-1.
75. ^ a b c Ziff, R. M.; C. R. Scullard; J. C. Wierman; M. R. A. Sedlock (2012). "The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices". Journal of Physics A. 45 (49): 494005. arXiv:1210.6609. Bibcode:2012JPhA...45W4005Z. doi:10.1088/1751-8113/45/49/494005.
76. Mertens, Stephan; Cristopher Moore (2012). "Continuum percolation thresholds in two dimensions". Physical Review E. 86 (6): 061109. arXiv:1209.4936. Bibcode:2012PhRvE..86f1109M. doi:10.1103/PhysRevE.86.061109. PMID 23367895.
77. ^ a b c d Quintanilla, John A.; R. M. Ziff (2007). "Asymmetry in the percolation thresholds of fully penetrable disks with two different radii". Physical Review E. 76 (5): 051115 [6 pages]. Bibcode:2007PhRvE..76e1115Q. doi:10.1103/PhysRevE.76.051115. PMID 18233631.
78. ^ a b c Quintanilla, J; S. Torquato; R. M. Ziff (2000). "Efficient measurement of the percolation threshold for fully penetrable discs". J. Phys. A: Math. Gen. 33 (42): L399–L407. Bibcode:2000JPhA...33L.399Q. CiteSeerX 10.1.1.6.8207. doi:10.1088/0305-4470/33/42/104.
79. ^ Lorenz, B; I. Orgzall and H.-O. Heuer (1993). "Universality and cluster structures in continuum models of percolation with two different radius distributions". J. Phys. A: Math. Gen. 26 (18): 4711–4712. Bibcode:1993JPhA...26.4711L. doi:10.1088/0305-4470/26/18/032.
80. ^ Rosso, M (1989). "Concentration gradient approach to continuum percolation in two dimensions". J. Phys. A: Math. Gen. 22 (4): L131–L136. Bibcode:1989JPhA...22L.131R. doi:10.1088/0305-4470/22/4/004.
81. ^ Gawlinski, Edward T; H. Eugene Stanley (1981). "Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs". J. Phys. A: Math. Gen. 14 (8): L291–L299. Bibcode:1981JPhA...14L.291G. doi:10.1088/0305-4470/14/8/007.
82. Yi, Y.-B.; A. M. Sastry (2004). "Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution". Proceedings of the Royal Society A. 460 (5): 2353–2380. Bibcode:2004RSPSA.460.2353Y. doi:10.1098/rspa.2004.1279.
83. ^ a b c Pike, G. E.; C. H. Seager (1974). "Percolation and conductivity: A computer study I". Phys. Rev. B. 10 (4): 1421–1434. Bibcode:1974PhRvB..10.1421P. doi:10.1103/PhysRevB.10.1421.
84. Lin, Jianjun; Chen, Huisu (2019). "Measurement of continuum percolation properties of two-dimensional particulate systems comprising congruent and binary superellipses". Powder Technology. 347: 17–26. doi:10.1016/j.powtec.2019.02.036.
85. ^ Domb, E. N. (1961). "Random Plane Networks". J. Soc. Indust. Appl. Math. 9 (4): 533–543. doi:10.1137/0109045.
86. ^ Gilbert, E. N. (1961). "Random Plane Networks". J. Soc. Indust. Appl. Math. 9 (4): 533–543. doi:10.1137/0109045.
87. ^ a b c Tarasevich, Yuri Yu.; Andrei V. Eserkepov (2020). "Percolation thresholds for discorectangles: numerical estimation for a range of aspect ratios". Physical Review E. 101 (2): 022108. arXiv:1910.05072. doi:10.1103/PhysRevE.101.022108. PMID 32168641.
88. Li, Jiantong; Mikael Östling (2016). "Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses". Physica A. 462: 940–950. Bibcode:2016PhyA..462..940L. doi:10.1016/j.physa.2016.06.020.
89. ^ Nguyen, Van Lien; Enrique Canessa (1999). "Finite-size scaling in two-dimensional continuum percolation models". Modern Physics Letters B. 13 (17): 577–583. arXiv:cond-mat/9909200. Bibcode:1999MPLB...13..577N. doi:10.1142/S0217984999000737.
90. ^ Roberts, F. D. K. (1967). "A Monte Carlo Solution of a Two-Dimensional Unstructured Cluster Problem". Biometrika. 54 (3/4): 625–628. doi:10.2307/2335053. JSTOR 2335053.
91. Xia, W.; M. F. Thorpe (1988). "Percolation properties of random ellipses". Physical Review A. 38 (5): 2650–2656. Bibcode:1988PhRvA..38.2650X. doi:10.1103/PhysRevA.38.2650. PMID 9900674.
92. Torquato, S.; Y. Jiao (2012). "Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. II. Simulation results and analyses". J. Chem. Phys. 137 (7): 074106. arXiv:1208.3720. Bibcode:2012JChPh.137g4106T. doi:10.1063/1.4742750. PMID 22920102.
93. Baker, Don R.; Gerald Paul; Sameet Sreenivasan; H. Eugene Stanley (2002). "Continuum percolation threshold for interpenetrating squares and cubes". Physical Review E. 66 (4): 046136 [5 pages]. arXiv:cond-mat/0203235. Bibcode:2002PhRvE..66d6136B. doi:10.1103/PhysRevE.66.046136. PMID 12443288.
94. Li, Jiantong; Mikael Östling (2013). "Percolation thresholds of two-dimensional continuum systems of rectangles". Physical Review E. 88 (1): 012101. Bibcode:2013PhRvE..88a2101L. doi:10.1103/PhysRevE.88.012101. PMID 23944408.
95. ^ Li, Jiantong; Shi-Li Zhang (2009). "Finite-size scaling in stick percolation". Physical Review E. 80 (4): 040104(R). Bibcode:2009PhRvE..80d0104L. doi:10.1103/PhysRevE.80.040104. PMID 19905260.
96. ^ Tarasevich, Yuri Yu.; Andrei V. Eserkepov (2018). "Percolation of sticks: Effect of stick alignment and length dispersity". Physical Review E. 98 (6): 062142. arXiv:1811.06681. Bibcode:2018PhRvE..98f2142T. doi:10.1103/PhysRevE.98.062142.
97. Sasidevan, V. (2013). "Continuum percolation of overlapping discs with a distribution of radii having a power-law tail". Physical Review E. 88 (2): 022140. arXiv:1302.0085. Bibcode:2013PhRvE..88b2140S. doi:10.1103/PhysRevE.88.022140. PMID 24032808.
98. ^ a b van der Marck, S. C. (1996). "Network approach to void percolation in a pack of unequal spheres". Physical Review Letters. 77 (9): 1785–1788. Bibcode:1996PhRvL..77.1785V. doi:10.1103/PhysRevLett.77.1785. PMID 10063171.
99. Jin, Yuliang; Patrick Charbonneau (2014). "Mapping the arrest of the random Lorentz gas onto the dynamical transition of a simple glass former". Physical Review E. 91 (4): 042313. arXiv:1409.0688. Bibcode:2015PhRvE..91d2313J. doi:10.1103/PhysRevE.91.042313. PMID 25974497.
100. ^ a b Lin, Jianjun; Zhang, Wulong; Chen, Huisu; Zhang, Rongling; Liu, Lin (2019). "Effect of pore characteristic on the percolation threshold and diffusivity of porous media comprising overlapping concave-shaped pores". International Journal of Heat and Mass Transfer. 138: 1333–1345. doi:10.1016/j.ijheatmasstransfer.2019.04.110.
101. ^ Meeks, Kelsey; J. Tencer; M.L. Pantoya (2017). "Percolation of binary disk systems: Modeling and theory". Phys. Rev. E. 95 (1): 012118. Bibcode:2017PhRvE..95a2118M. doi:10.1103/PhysRevE.95.012118. PMID 28208494.
102. ^ Quintanilla, John A. (2001). "Measurement of the percolation threshold for fully penetrable disks of different radii". Phys. Rev. E. 63 (6): 061108. Bibcode:2001PhRvE..63f1108Q. doi:10.1103/PhysRevE.63.061108. PMID 11415069.
103. ^ a b c Melchert, Oliver (2013). "Percolation thresholds on planar Euclidean relative-neighborhood graphs". Physical Review E. 87 (4): 042106. arXiv:1301.6967. Bibcode:2013PhRvE..87d2106M. doi:10.1103/PhysRevE.87.042106. PMID 23679372.
104. ^ a b Bernardi, Olivier; Curien, Nicolas; Miermont, Grėgory (2019). "A Boltzmann approach to percolation on random triangulations". Canadian Journal of Mathematics. 71: 1–43. arXiv:1705.04064. doi:10.4153/CJM-2018-009-x.
105. Becker, A.; R. M. Ziff (2009). "Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations". Physical Review E. 80 (4): 041101. arXiv:0906.4360. Bibcode:2009PhRvE..80d1101B. doi:10.1103/PhysRevE.80.041101. PMID 19905267.
106. ^ Shante, K. S.; S. Kirkpatrick (1971). "An introduction to percolation theory". Advances in Physics. 20 (85): 325–357. Bibcode:1971AdPhy..20..325S. doi:10.1080/00018737100101261.
107. ^ a b c Hsu, H. P.; M. C. Huang (1999). "Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals". Physical Review E. 60 (6): 6361–6370. Bibcode:1999PhRvE..60.6361H. doi:10.1103/PhysRevE.60.6361. PMID 11970550.
108. ^ a b Norrenbrock, C. (2014). "Percolation threshold on planar Euclidean Gabriel Graphs". Journal of Physics A. 40 (31): 9253–9258. arXiv:0704.2098. Bibcode:2007JPhA...40.9253P. doi:10.1088/1751-8113/40/31/005.
109. ^ a b Bertin, E; J.-M. Billiot, R. Drouilhet (2002). "Continuum percolation in the Gabriel graph". Adv. Appl. Probab. 34 (4): 689. doi:10.1239/aap/1037990948.
110. ^ Lepage, Thibaut; Lucie Delaby; Fausto Malvagi; Alain Mazzolo (2011). "Monte Carlo simulation of fully Markovian stochastic geometries". Progress in Nuclear Science and Technology. 2: 743–748. doi:10.15669/pnst.2.743.
111. ^ Ziff, R. M.; F. Babalievski (1999). "Site percolation on the Penrose rhomb lattice". Physica A. 269 (2–4): 201–210. Bibcode:1999PhyA..269..201Z. doi:10.1016/S0378-4371(99)00166-1.
112. Babalievski, F. (1995). "Percolation thresholds and percolation conductivities of octagonal and dodecagonal quasicrystalline lattices". Physica A. 220 (1995): 245–250. Bibcode:1995PhyA..220..245B. doi:10.1016/0378-4371(95)00260-E.
113. ^ Bollobás, Béla; Oliver Riordan (2006). "The critical probability for random Voronoi percolation in the plane is 1/2". Probab. Theory Relat. Fields. 136 (3): 417–468. arXiv:math/0410336. doi:10.1007/s00440-005-0490-z.
114. ^ Angel, Omer; Schramm, Oded (2003). "Uniform infinite planar triangulation". Commun. Math. Phys. 241 (2–3): 191–213. arXiv:math/0207153. Bibcode:2003CMaPh.241..191A. doi:10.1007/s00220-003-0932-3.
115. ^ Angel, O.; Curien, Nicolas (2014). "Percolations on random maps I: Half-plane models". Annales de l'Institut Henri Poincaré, Probabilités et Statistiques. 51 (2): 405–431. arXiv:1301.5311. Bibcode:2015AIHPB..51..405A. doi:10.1214/13-AIHP583.
116. ^ a b c Zierenberg, Johannes; Niklas Fricke; Martin Marenz; F. P. Spitzner; Viktoria Blavatska; Wolfhard Janke (2017). "Percolation thresholds and fractal dimensions for square and cubic lattices with long-range correlated defects". Phys. Rev. E. 96 (6): 062125. arXiv:1708.02296. Bibcode:2017PhRvE..96f2125Z. doi:10.1103/PhysRevE.96.062125. PMID 29347311.
117. Sotta, P.; D. Long (2003). "The crossover from 2D to 3D percolation: Theory and numerical simulations". Eur. Phys. J. E. 11 (4): 375–388. Bibcode:2003EPJE...11..375S. doi:10.1140/epje/i2002-10161-6. PMID 15011039.
118. Horton, M. K.; Moram, M. A. (April 17, 2017). "Alloy composition fluctuations and percolation in semiconductor alloy quantum wells". Applied Physics Letters. 110 (16): 162103. doi:10.1063/1.4980089. ISSN 0003-6951.
119. Gliozzi, F.; S. Lottini; M. Panero; A. Rago (2005). "Random percolation as a gauge theory". Nuclear Physics B. 719 (3): 255–274. arXiv:cond-mat/0502339. Bibcode:2005NuPhB.719..255G. doi:10.1016/j.nuclphysb.2005.04.021. hdl:2318/5995.CS1 maint: multiple names: authors list (link)
120. Yoo, Ted Y.; Jonathan Tran; Shane P. Stahlheber; Carina E. Kaainoa; Kevin Djepang; Alexander R. Small (2014). "Site percolation on lattices with low average coordination numbers". J. Stat. Mech. Theory Exp. 2014 (6): P06014. arXiv:1403.1676. Bibcode:2014JSMTE..06..014Y. doi:10.1088/1742-5468/2014/06/p06014.
121. Tran, Jonathan; Ted Yoo; Shane Stahlheber; Alex Small (2013). "Percolation thresholds on 3-dimensional lattices with 3 nearest neighbors". J. Stat. Mech.: Theory Exp. 2013 (5): P05014. arXiv:1211.6531. Bibcode:2013JSMTE..05..014T. doi:10.1088/1742-5468/2013/05/P05014.
122. ^ Wells, A. F. (1984). "Structures Based on the 3-Connected Net 103b". Journal of Solid State Chemistry. 54 (3): 378–388. Bibcode:1984JSSCh..54..378W. doi:10.1016/0022-4596(84)90169-5.
123. ^ a b Pant, Mihir; Don Towsley; Dirk Englund; Saikat Guha (2017). "Percolation thresholds for photonic quantum computing". Nature Communications. 10 (1): 1070. arXiv:1701.03775. doi:10.1038/s41467-019-08948-x. PMC 6403388. PMID 30842425.
124. ^ Hyde, Stephen T.; O'Keeffe, Michael; Proserpio, Davide M. (2008). "A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics". Angew. Chem. Int. Ed. 47 (42): 7996–8000. doi:10.1002/anie.200801519. PMID 18767088.
125. van der Marck, S. C. (1997). "Percolation thresholds of the duals of the face-centered-cubic, hexagonal-close-packed, and diamond lattices". Phys. Rev. E. 55 (6): 6593–6597. Bibcode:1997PhRvE..55.6593V. doi:10.1103/PhysRevE.55.6593.
126. ^ a b Frisch, H. L.; E. Sonnenblick; V. A. Vyssotsky; J. M. Hammersley (1961). "Critical Percolation Probabilities (Site Problem)". Physical Review. 124 (4): 1021–1022. Bibcode:1961PhRv..124.1021F. doi:10.1103/PhysRev.124.1021.CS1 maint: multiple names: authors list (link)
127. ^ a b Vyssotsky, V. A.; S. B. Gordon; H. L. Frisch; J. M. Hammersley (1961). "Critical Percolation Probabilities (Bond Problem)". Physical Review. 123 (5): 1566–1567. Bibcode:1961PhRv..123.1566V. doi:10.1103/PhysRev.123.1566.CS1 maint: multiple names: authors list (link)
128. Gaunt, D. S.; M. F. Sykes (1983). "Series study of random percolation in three dimensions". J. Phys. A. 16 (4): 783. Bibcode:1983JPhA...16..783G. doi:10.1088/0305-4470/16/4/016.
129. ^ a b c d Xu, Xiao; Junfeng Wang, Jian-Ping Lv, Youjin Deng (2014). "Simultaneous analysis of three-dimensional percolation models". Frontiers of Physics. 9 (1): 113–119. arXiv:1310.5399. Bibcode:2014FrPhy...9..113X. doi:10.1007/s11467-013-0403-z.CS1 maint: multiple names: authors list (link)
130. ^ Silverman, Amihal; J. Adler (1990). "Site-percolation threshold for a diamond lattice with diatomic substitution". Physical Review B. 42 (2): 1369–1373. Bibcode:1990PhRvB..42.1369S. doi:10.1103/PhysRevB.42.1369. PMID 9995550.
131. ^ a b van der Marck, Steven C. (1997). "Erratum: Percolation thresholds and universal formulas". Phys. Rev. E. 56 (4): 3732.
132. van der Marck, Steven C. (1998). "Calculation of Percolation Thresholds in High Dimensions for FCC, BCC and Diamond Lattices". International Journal of Modern Physics C. 9 (4): 529–540. arXiv:cond-mat/9802187. Bibcode:1998IJMPC...9..529V. doi:10.1142/S0129183198000431.
133. ^ a b Sykes, M. F.; D. S. Gaunt; M. Glen (1976). "Percolation processes in three dimensions". J. Phys. A: Math. Gen. 9 (10): 1705–1712. Bibcode:1976JPhA....9.1705S. doi:10.1088/0305-4470/9/10/021.
134. Sykes, M. F.; J. W. Essam (1964). "Critical percolation probabilities by series method". Physical Review. 133 (1A): A310–A315. Bibcode:1964PhRv..133..310S. doi:10.1103/PhysRev.133.A310.
135. van der Marck, Steven C. (1998). "Site percolation and random walks on d-dimensional Kagome lattices". Journal of Physics A. 31 (15): 3449–3460. arXiv:cond-mat/9801112. Bibcode:1998JPhA...31.3449V. doi:10.1088/0305-4470/31/15/010.
136. ^ Sur, Amit; Joel L. Lebowitz; J. Marro; M. H. Kalos; S. Kirkpatrick (1976). "Monte Carlo studies of percolation phenomena for a simple cubic lattice". Journal of Statistical Physics. 15 (5): 345–353. Bibcode:1976JSP....15..345S. doi:10.1007/BF01020338.
137. ^ a b Wang, J; Z. Zhou; W. Zhang; T. Garoni; Y. Deng (2013). "Bond and site percolation in three dimensions". Physical Review E. 87 (5): 052107. arXiv:1302.0421. Bibcode:2013PhRvE..87e2107W. doi:10.1103/PhysRevE.87.052107. PMID 23767487.
138. ^ Grassberger, P. (1992). "Numerical studies of critical percolation in three dimensions". J. Phys. A. 25 (22): 5867–5888. Bibcode:1992JPhA...25.5867G. doi:10.1088/0305-4470/25/22/015.
139. ^ Acharyya, M.; D. Stauffer (1998). "Effects of Boundary Conditions on the Critical Spanning Probability". Int. J. Mod. Phys. C. 9 (4): 643–647. arXiv:cond-mat/9805355. Bibcode:1998IJMPC...9..643A. doi:10.1142/S0129183198000534.
140. ^ Jan, N.; D. Stauffer (1998). "Random Site Percolation in Three Dimensions". Int. J. Mod. Phys. C. 9 (4): 341–347. Bibcode:1998IJMPC...9..341J. doi:10.1142/S0129183198000261.
141. ^ Deng, Youjin; H. W. J. Blöte (2005). "Monte Carlo study of the site-percolation model in two and three dimensions". Physical Review E. 72 (1): 016126. Bibcode:2005PhRvE..72a6126D. doi:10.1103/PhysRevE.72.016126. PMID 16090055.
142. ^ Ballesteros, P. N.; L. A. Fernández, V. Martín-Mayor, A. Muñoz, Sudepe, G. Parisi, and J. J. Ruiz-Lorenzo (1999). "Scaling corrections: site percolation and Ising model in three dimensions". Journal of Physics A. 32 (1): 1–13. arXiv:cond-mat/9805125. Bibcode:1999JPhA...32....1B. doi:10.1088/0305-4470/32/1/004.CS1 maint: multiple names: authors list (link)
143. ^ a b c Lorenz, C. D.; R. M. Ziff (1998). "Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation". Journal of Physics A. 31 (40): 8147–8157. arXiv:cond-mat/9806224. Bibcode:1998JPhA...31.8147L. doi:10.1088/0305-4470/31/40/009.
144. Koza, Zbigniew; Jakub Poła (2016). "From discrete to continuous percolation in dimensions 3 to 7". Journal of Statistical Mechanics: Theory and Experiment. 2016 (10): 103206. arXiv:1606.08050. Bibcode:2016JSMTE..10.3206K. doi:10.1088/1742-5468/2016/10/103206.
145. ^ Škvor, Jiří; Ivo Nezbeda (2009). "Percolation threshold parameters of fluids". Physical Review E. 79 (4): 041141. Bibcode:2009PhRvE..79d1141S. doi:10.1103/PhysRevE.79.041141. PMID 19518207.
146. ^ a b c d Adler, Joan; Yigal Meir; Amnon Aharony; A. B. Harris; Lior Klein (1990). "Low-Concentration Series in General Dimension". Journal of Statistical Physics. 58 (3/4): 511–538. Bibcode:1990JSP....58..511A. doi:10.1007/BF01112760.
147. Dammer, Stephan M; Haye Hinrichsen (2004). "Spreading with immunization in high dimensions". J. Stat. Mech.: Theory Exp. 2004 (7): P07011. arXiv:cond-mat/0405577. Bibcode:2004JSMTE..07..011D. doi:10.1088/1742-5468/2004/07/P07011.
148. ^ a b c Lorenz, C. D.; R. M. Ziff (1998). "Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices". Physical Review E. 57 (1): 230–236. arXiv:cond-mat/9710044. Bibcode:1998PhRvE..57..230L. doi:10.1103/PhysRevE.57.230.
149. ^ a b Schrenk, K. J.; N. A. M. Araújo; H. J. Herrmann (2013). "Stacked triangular lattice: percolation properties". Physical Review E. 87 (3): 032123. arXiv:1302.0484. Bibcode:2013PhRvE..87c2123S. doi:10.1103/PhysRevE.87.032123.
150. ^ Martins, P.; J. Plascak (2003). "Percolation on two- and three-dimensional lattices". Physical Review. 67 (4): 046119. arXiv:cond-mat/0304024. Bibcode:2003PhRvE..67d6119M. doi:10.1103/physreve.67.046119. PMID 12786448.
151. ^ Bradley, R. M.; P. N. Strenski, J.-M. Debierre (1991). "Surfaces of percolation clusters in three dimensions". Physical Review B. 44 (1): 76–84. Bibcode:1991PhRvB..44...76B. doi:10.1103/PhysRevB.44.76. PMID 9998221.
152. Kurzawski, Ł.; K. Malarz (2012). "Simple cubic random-site percolation thresholds for complex neighbourhoods". Rep. Math. Phys. 70 (2): 163–169. arXiv:1111.3254. Bibcode:2012RpMP...70..163K. CiteSeerX 10.1.1.743.1726. doi:10.1016/S0034-4877(12)60036-6.
153. ^ Gallyamov, S. R.; S.A. Melchukov (2013). "Percolation threshold of a simple cubic lattice with fourth neighbors: the theory and numerical calculation with parallelization" (PDF). Third International Conference "High Performance Computing" HPC-UA 2013 (Ukraine, Kyiv, October 7-11, 2013).
154. ^ Sykes, M. F.; D. S. Gaunt; J. W. Essam (1976). "The percolation probability for the site problem on the face-centred cubic lattice". Journal of Physics A. 9 (5): L43–L46. Bibcode:1976JPhA....9L..43S. doi:10.1088/0305-4470/9/5/002.
155. ^ a b Lorenz, C. D.; R. May; R. M. Ziff (2000). "Similarity of Percolation Thresholds on the HCP and FCC Lattices" (PDF). Journal of Statistical Physics. 98 (3/4): 961–970. doi:10.1023/A:1018648130343. hdl:2027.42/45178.
156. ^ Tahir-Kheli, Jamil; W. A. Goddard III (2007). "Chiral plaquette polaron theory of cuprate superconductivity". Physical Review B. 76 (1): 014514. arXiv:0707.3535. Bibcode:2007PhRvB..76a4514T. doi:10.1103/PhysRevB.76.014514.
157. Malarz, Krzysztof (2015). "Simple cubic random-site percolation thresholds for neighborhoods containing fourth-nearest neighbors". Phys. Rev. E. 91 (4): 043301. arXiv:1501.01586. Bibcode:2015PhRvE..91d3301M. doi:10.1103/PhysRevE.91.043301. PMID 25974606.
158. Xun, Zhipeng; Robert M. Ziff (2020). "Bond percolation on simple cubic lattices with extended neighborhoods". Phys. Rev. E. 102 (4): 012102. arXiv:2001.00349. doi:10.1103/PhysRevE.102.012102.
159. ^ a b c d Jerauld, G. R.; L. E. Scriven; H. T. Davis (1984). "Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder". J. Phys. C: Solid State Phys. 17 (19): 3429–3439. Bibcode:1984JPhC...17.3429J. doi:10.1088/0022-3719/17/19/017.
160. ^ Xu, Fangbo; Zhiping Xu; Boris I. Yakobson (2014). "Site-Percolation Threshold of Carbon Nanotube Fibers---Fast Inspection of Percolation with Markov Stochastic Theory". Physica A. 407: 341–349. arXiv:1401.2130. Bibcode:2014PhyA..407..341X. doi:10.1016/j.physa.2014.04.013.
161. ^ a b c Gawron, T. R.; Marek Cieplak (1991). "Site percolation thresholds of the FCC lattice" (PDF). Acta Physica Polonica A. 80 (3): 461.
162. ^ Harter, T. (2005). "Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields". Physical Review E. 72 (2): 026120. Bibcode:2005PhRvE..72b6120H. doi:10.1103/PhysRevE.72.026120. PMID 16196657.
163. ^ Sykes, M. F.; J. J. Rehr; Maureen Glen (1996). "A note on the percolation probabilities of pairs of closely similar lattices". Proc. Camb. Phil. Soc. 76: 389–392. doi:10.1017/S0305004100049021.
164. ^ Weber, H.; W. Paul (1996). "Penetrant diffusion in frozen polymer matrices: A finite-size scaling study of free volume percolation". Physical Review E. 54 (4): 3999–4007. Bibcode:1996PhRvE..54.3999W. doi:10.1103/PhysRevE.54.3999. PMID 9965547.
165. ^ Tarasevich, Yu. Yu.; V. A. Cherkasova (2007). "Dimer percolation and jamming on simple cubic lattice". European Physical Journal B. 60 (1): 97–100. arXiv:0709.3626. Bibcode:2007EPJB...60...97T. doi:10.1140/epjb/e2007-00321-2.
166. ^ Holcomb, D F..; J. J. Rehr, Jr. (1969). "Percolation in heavily doped semiconductors*". Physical Review. 183 (3): 773--776. doi:10.1103/PhysRev.183.773.
167. ^ Holcomb, D F.; F. Holcomb; M. Iwasawa (1972). "Clustering of randomly placed spheres". Biometrika. 59: 207–209. doi:10.1093/biomet/59.1.207.
168. ^ Shante, Vinod K. S.; Scott Kirkpatrick (1971). "An introduction to percolation theory". Advances in Physics. 20 (85): 325–357. doi:10.1080/00018737100101261.
169. ^ a b Rintoul, M. D.; S. Torquato (1997). "Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model". J. Phys. A: Math. Gen. 30 (16): L585. Bibcode:1997JPhA...30L.585R. CiteSeerX 10.1.1.42.4284. doi:10.1088/0305-4470/30/16/005.
170. ^ Consiglio, R.; R. Baker; G. Paul; H. E. Stanley (2003). "Continuum percolation of congruent overlapping spherocylinders". Physica A. 319: 49–55. doi:10.1016/S0378-4371(02)01501-7.
171. Xu, Wenxiang; Xianglong Su; Yang Jiao (2016). "Continuum percolation of congruent overlapping spherocylinders". Phys. Rev. E. 93 (3): 032122. Bibcode:2016PhRvE..94c2122X. doi:10.1103/PhysRevE.94.032122. PMID 27078307.
172. ^ a b Lorenz, C. D.; R. M. Ziff (2000). "Precise determination of the critical percolation threshold for the three dimensional Swiss cheese model using a growth algorithm" (PDF). J. Chem. Phys. 114 (8): 3659. Bibcode:2001JChPh.114.3659L. doi:10.1063/1.1338506. hdl:2027.42/70114.
173. Lin, Jianjun; Chen, Huisu; Xu, Wenxiang (2018). "Geometrical percolation threshold of congruent cuboidlike particles in overlapping particle systems". Physical Review E. 98 (1): 012134. Bibcode:2018PhRvE..98a2134L. doi:10.1103/PhysRevE.98.012134. PMID 30110832.
174. Garboczi, E. J.; K. A. Snyder; J. F. Douglas (1995). "Geometrical percolation threshold of overlapping ellipsoids". Phys. Rev. E. 52 (1): 819–827. Bibcode:1995PhRvE..52..819G. doi:10.1103/PhysRevE.52.819. PMID 9963485.
175. Yi, Y.-B.; A. M. Sastry (2004). "Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution". Proc. R. Soc. Lond. A. 460 (2048): 2353–2380. Bibcode:2004RSPSA.460.2353Y. doi:10.1098/rspa.2004.1279.
176. ^ a b c Hyytiä, E.; J. Virtamo, P. Lassila and J. Ott (2012). "Continuum percolation threshold for permeable aligned cylinders and opportunistic networking". IEEE Communications Letters. 16 (7): 1064–1067. doi:10.1109/LCOMM.2012.051512.120497.
177. Torquato, S.; Y. Jiao (2012). "Effect of Dimensionality on the Percolation Threshold of Overlapping Nonspherical Hyperparticles". Physical Review E. 87 (2): 022111. arXiv:1210.0134. Bibcode:2013PhRvE..87b2111T. doi:10.1103/PhysRevE.87.022111. PMID 23496464.
178. ^ a b c Yi, Y. B.; E. Tawerghi (2009). "Geometric percolation thresholds of interpenetrating plates in three-dimensional space". Physical Review E. 79 (4): 041134. Bibcode:2009PhRvE..79d1134Y. doi:10.1103/PhysRevE.79.041134. PMID 19518200.
179. Yi, Y. B.; K. Esmail (2012). "Computational measurement of void percolation thresholds of oblate particles and thin plate composites". J. Appl. Phys. 111 (12): 124903. Bibcode:2012JAP...111l4903Y. doi:10.1063/1.4730333.
180. ^ a b Priour, Jr., D. J.; N. J. McGuigan (2017). "Percolation through voids around randomly oriented faceted inclusions". arXiv:1712.10241 [cond-mat.stat-mech].
181. Priour, Jr., D. J.; N. J. McGuigan (2018). "Percolation through voids around randomly oriented polyhedra and axially symmetric grains". Phys. Rev. Lett. 121 (22): 225701. arXiv:1801.09970. Bibcode:2018PhRvL.121v5701P. doi:10.1103/PhysRevLett.121.225701. PMID 30547614.
182. ^ Kertesz, Janos (1981). "Percolation of holes between overlapping spheres: Monte Carlo calculation of the critical volume fraction" (PDF). Journal de Physique Lettres. 42 (17): L393–L395. doi:10.1051/jphyslet:019810042017039300.
183. ^ Elam, W. T.; A. R. Kerstein; J. J. Rehr (1984). "Critical properties of the void percolation problem for spheres". Phys. Rev. Lett. 52 (7): 1516–1519. Bibcode:1984PhRvL..52.1516E. doi:10.1103/PhysRevLett.52.1516.
184. ^ Rintoul, M. D. (2000). "Precise determination of the void percolation threshold for two distributions of overlapping spheres". Physical Review E. 62 (6): 68–72. doi:10.1103/PhysRevE.62.68. PMID 11088435.
185. ^ Yi, Y. B. (2006). "Void percolation and conduction of overlapping ellipsoids". Physical Review E. 74 (3): 031112. Bibcode:2006PhRvE..74c1112Y. doi:10.1103/PhysRevE.74.031112. PMID 17025599.
186. ^ a b Höfling, F.; T. Munk; E. Frey; T. Franosch (2008). "Critical dynamics of ballistic and Brownian particles in a heterogeneous environment". J. Chem. Phys. 128 (16): 164517. arXiv:0712.2313. Bibcode:2008JChPh.128p4517H. doi:10.1063/1.2901170. PMID 18447469.
187. ^ Priour, Jr., D.J. (2014). "Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis". Phys. Rev. E. 89 (1): 012148. arXiv:1208.0328. Bibcode:2014PhRvE..89a2148P. doi:10.1103/PhysRevE.89.012148. PMID 24580213.
188. ^ a b c Powell, M. J. (1979). "Site percolation in randomly packed spheres". Physical Review B. 20 (10): 4194–4198. Bibcode:1979PhRvB..20.4194P. doi:10.1103/PhysRevB.20.4194.
189. ^ a b Ziff, R. M.; Salvatore Torquato (2016). "Percolation of disordered jammed sphere packings". Journal of Physics A: Mathematical and Theoretical. 50 (8): 085001. arXiv:1611.00279. Bibcode:2017JPhA...50h5001Z. doi:10.1088/1751-8121/aa5664.
190. ^ Lin, Jianjun; Chen, Huisu (2018). "Continuum percolation of porous media via random packing of overlapping cube-like particles". Theoretical & Applied Mechanics Letters. 8 (5): 299–303. doi:10.1016/j.taml.2018.05.007.
191. ^ Lin, Jianjun; Chen, Huisu (2018). "Effect of particle morphologies on the percolation of particulate porous media: A study of superballs". Powder Technology. 335: 388–400. doi:10.1016/j.powtec.2018.05.015.
192. ^ Clerc, J. P.; G. Giraud; S. Alexander; E. Guyon (1979). "Conductivity of a mixture of conducting and insulating grains: Dimensionality effects". Physical Review B. 22 (5): 2489–2494. doi:10.1103/PhysRevB.22.2489.
193. ^ C. Larmier, E. Dumonteil, F. Malvagi, A. Mazzolo, and A. Zoia, C (2016). "Finite-size effects and percolation properties of Poisson geometries". Physical Review E. 94 (1): 012130. arXiv:1605.04550. Bibcode:2016PhRvE..94a2130L. doi:10.1103/PhysRevE.94.012130. PMID 27575099.CS1 maint: multiple names: authors list (link)
194. Zakalyukin, R. M.; V. A. Chizhikov (2005). "Calculations of the Percolation Thresholds of a Three-Dimensional (Icosahedral) Penrose Tiling by the Cubic Approximant Method". Crystallography Reports. 50 (6): 938–948. Bibcode:2005CryRp..50..938Z. doi:10.1134/1.2132400.
195. ^ Grassberger, P. (2017). "Some remarks on drilling percolation". Phys. Rev. E. 95 (1): 010103. arXiv:1611.07939. doi:10.1103/PhysRevE.95.010103. PMID 28208497.
196. ^ Schrenk, K. J.; M. R. Hilário; V. Sidoravicius; N. A. M. Araújo; H. J. Herrmann; M. Thielmann; A. Teixeira (2016). "Critical Fragmentation Properties of Random Drilling: How Many Holes Need to Be Drilled to Collapse a Wooden Cube?". Phys. Rev. Lett. 116 (5): 055701. arXiv:1601.03534. Bibcode:2016PhRvL.116e5701S. doi:10.1103/PhysRevLett.116.055701. PMID 26894717.
197. ^ Kantor, Yacov (1986). "Three-dimensional percolation with removed lines of sites". Phys. Rev. B. 33 (5): 3522–3525. Bibcode:1986PhRvB..33.3522K. doi:10.1103/PhysRevB.33.3522. PMID 9938740.
198. ^ a b c Kirkpatrick, Scott (1976). "Percolation phenomena in higher dimensions: Approach to the mean-field limit". Physical Review Letters. 36 (2): 69–72. Bibcode:1976PhRvL..36...69K. doi:10.1103/PhysRevLett.36.69.
199. ^ a b c d Gaunt, D. S.; Sykes, M. F.; Ruskin, Heather (1976). "Percolation processes in d-dimensions". J. Phys. A: Math. Gen. 9 (11): 1899–1911. Bibcode:1976JPhA....9.1899G. doi:10.1088/0305-4470/9/11/015.
200. Grassberger, Peter (2003). "Critical percolation in high dimensions". Physical Review E. 67 (3): 4. arXiv:cond-mat/0202144. Bibcode:2003PhRvE..67c6101G. doi:10.1103/PhysRevE.67.036101. PMID 12689126.
201. ^ a b Paul, Gerald; Robert M. Ziff; H. Eugene Stanley (2001). "Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions". Physical Review E. 64 (2): 8. arXiv:cond-mat/0101136. Bibcode:2001PhRvE..64b6115P. doi:10.1103/PhysRevE.64.026115. PMID 11497659.
202. ^ Ballesteros, H. G.; L. A. Fernández; V. Martín-Mayor; A. Muñoz Sudupe; G. Parisi; J. J. Ruiz-Lorenzo (1997). "Measures of critical exponents in the four dimensional site percolation". Phys. Lett. B. 400 (3–4): 346–351. arXiv:hep-lat/9612024. Bibcode:1997PhLB..400..346B. doi:10.1016/S0370-2693(97)00337-7.
203. Kotwica, M.; P. Gronek; K. Malarz (2019). "Efficient space virtualisation for Hoshen–Kopelman algorithm". International Journal of Modern Physics C. 30: 1950055. arXiv:1803.09504. Bibcode:2018arXiv180309504K. doi:10.1142/S0129183119500554.
204. Mertens, Stephan; Christopher Moore (2018). "Percolation Thresholds and Fisher Exponents in Hypercubic Lattices". Phys. Rev. E. 98 (2): 022120. arXiv:1806.08067. Bibcode:2018PhRvE..98b2120M. doi:10.1103/PhysRevE.98.022120. PMID 30253462.
205. ^ a b c d Xun, Zhipeng (2020). "Precise bond percolation thresholds on several four-dimensional lattices". Physical Review Research. 2 (1): 013067. arXiv:1910.11408. Bibcode:2020PhRvR...2a3067X. doi:10.1103/PhysRevResearch.2.013067.
206. Adler, Joan; Yigal Meir; Amnon Aharony; A. B. Harris (1990). "Series Study of Percolation Moments in General Dimension". Physical Review B. 41 (13): 9183–9206. Bibcode:1990PhRvB..41.9183A. doi:10.1103/PhysRevB.41.9183. PMID 9993262.
207. ^ Stauffer, Dietrich; Robert M. Ziff (1999). "Reexamination of Seven-Dimensional Site Percolation Thresholds". International Journal of Modern Physics C. 11 (1): 205–209. arXiv:cond-mat/9911090. Bibcode:2000IJMPC..11..205S. doi:10.1142/S0129183100000183.
208. ^ Gaunt, D. S.; Ruskin, Heather (1978). "Bond percolation processes in d-dimensions". J. Phys. A: Math. Gen. 11 (7): 1369. Bibcode:1978JPhA...11.1369G. doi:10.1088/0305-4470/11/7/025.
209. ^ Mertens, Stephan; Christopher Moore (2018). "Series Expansion of Critical Densities for Percolation on ℤd". J. Phys. A: Math. Theor. 51 (47): 475001. arXiv:1805.02701. doi:10.1088/1751-8121/aae65c.
210. ^ a b Gori, G.; Michelangeli, M.; Defenu, N.; Trombettoni, A. (2017). "One-dimensional long-range percolation: A numerical study". Physical Review E. 96 (1): 012108. arXiv:1610.00200. Bibcode:2017PhRvE..96a2108G. doi:10.1103/physreve.96.012108. PMID 29347133.
211. ^ a b Schulman, L. S. (1983). "Long range percolation in one dimension". Journal of Physics A: Mathematical and General. 16 (17): L639–L641. Bibcode:1983JPhA...16L.639S. doi:10.1088/0305-4470/16/17/001. ISSN 0305-4470.
212. ^ Aizenman, M.; Newman, C. M. (December 1, 1986). "Discontinuity of the percolation density in one dimensional 1/|x−y|2 percolation models". Communications in Mathematical Physics. 107 (4): 611–647. Bibcode:1986CMaPh.107..611A. doi:10.1007/BF01205489. ISSN 0010-3616.
213. ^ Baek, S.K.; Petter Minnhagen and Beom Jun Kim (2009). "Comment on 'Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees'". J. Phys. A: Math. Theor. 42 (47): 478001. arXiv:0910.4340. Bibcode:2009JPhA...42U8001B. doi:10.1088/1751-8113/42/47/478001.
214. ^ a b c Boettcher, Stefan; Jessica L. Cook and Robert M. Ziff (2009). "Patchy percolation on a hierarchical network with small-world bonds". Phys. Rev. E. 80 (4): 041115. arXiv:0907.2717. Bibcode:2009PhRvE..80d1115B. doi:10.1103/PhysRevE.80.041115. PMID 19905281.
215. Mertens, Stephan; Cristopher Moore (2017). "Percolation thresholds in hyperbolic lattices". Phys. Rev. E. 96 (4): 042116. arXiv:1708.05876. Bibcode:2017PhRvE..96d2116M. doi:10.1103/PhysRevE.96.042116. PMID 29347529.
216. ^ a b c Lopez, Jorge H.; J. M. Schwarz (2017). "Constraint percolation on hyperbolic lattices". Phys. Rev. E. 96 (5): 052108. arXiv:1512.05404. Bibcode:2017PhRvE..96e2108L. doi:10.1103/PhysRevE.96.052108. PMID 29347694.
217. Baek, S.K.; Petter Minnhagen and Beom Jun Kim (2009). "Percolation on hyperbolic lattices". Phys. Rev. E. 79 (1): 011124. arXiv:0901.0483. Bibcode:2009PhRvE..79a1124B. doi:10.1103/PhysRevE.79.011124. PMID 19257018.
218. Gu, Hang; Robert M. Ziff (2012). "Crossing on hyperbolic lattices". Phys. Rev. E. 85 (5): 051141. arXiv:1111.5626. Bibcode:2012PhRvE..85e1141G. doi:10.1103/PhysRevE.85.051141. PMID 23004737.
219. ^ a b c d Nogawa, Tomoaki; Takehisa Hasegawa (2009). "Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees". J. Phys. A: Math. Theor. 42 (14): 145001. arXiv:0810.1602. Bibcode:2009JPhA...42n5001N. doi:10.1088/1751-8113/42/14/145001.
220. ^ a b Minnhagen, Petter; Seung Ki Baek (2010). "Analytic results for the percolation transitions of the enhanced binary tree". Phys. Rev. E. 82 (1): 011113. arXiv:1003.6012. Bibcode:2010PhRvE..82a1113M. doi:10.1103/PhysRevE.82.011113. PMID 20866571.
221. ^ Kozáková, Iva (2009). "Critical percolation of virtually free groups and other tree-like graphs". Annals of Probability. 37 (6): 2262–2296. arXiv:0801.4153. doi:10.1214/09-AOP458.
222. ^ Cohen, R; K. Erez; D. Ben-Avraham; S. Havlin (2000). "Resilience of the Internet to random breakdowns". Phys. Rev. Lett. 85 (21): 4626–8. arXiv:cond-mat/0007048. Bibcode:2000PhRvL..85.4626C. CiteSeerX 10.1.1.242.6797. doi:10.1103/PhysRevLett.85.4626. PMID 11082612.
223. Wang, Junfeng; Zongzheng Zhou; Qingquan Liu; Timothy M. Garoni; Youjin Deng (2013). "A high-precision Monte Carlo study of directed percolation in (d + 1) dimensions". Physical Review E. 88 (4): 042102. arXiv:1201.3006. Bibcode:2013PhRvE..88d2102W. doi:10.1103/PhysRevE.88.042102. PMID 24229111.
224. ^ a b Jensen, Iwan; Anthony J. Guttmann (1995). "Series expansions of the percolation probability for directed square and honeycomb lattices". J. Phys. A: Math. Gen. 28 (17): 4813–4833. arXiv:cond-mat/9509121. Bibcode:1995JPhA...28.4813J. doi:10.1088/0305-4470/28/17/015.
225. ^ a b Jensen, Iwan (2004). "Low-density series expansions for directed percolation: III. Some two-dimensional lattices". J. Phys. A: Math. Gen. 37 (4): 6899–6915. arXiv:cond-mat/0405504. Bibcode:2004JPhA...37.6899J. CiteSeerX 10.1.1.700.2691. doi:10.1088/0305-4470/37/27/003.
226. ^ a b c d Essam, J. W.; A. J. Guttmann; K. De'Bell (1988). "On two-dimensional directed percolation". J. Phys. A. 21 (19): 3815–3832. Bibcode:1988JPhA...21.3815E. doi:10.1088/0305-4470/21/19/018.
227. ^ Lübeck, S.; R. D. Willmann (2002). "Universal scaling behaviour of directed percolation and the pair contact process in an external field". J. Phys. A. 35 (48): 10205. arXiv:cond-mat/0210403. Bibcode:2002JPhA...3510205L. doi:10.1088/0305-4470/35/48/301.
228. ^ a b Jensen, Iwan (1999). "Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice". J. Phys. A. 32 (28): 5233–5249. arXiv:cond-mat/9906036. Bibcode:1999JPhA...32.5233J. doi:10.1088/0305-4470/32/28/304.
229. ^ Essam, John; K. De'Bell; J. Adler; F. M. Bhatti (1986). "Analysis of extended series for bond percolation on the directed square lattice". Physical Review B. 33 (2): 1982–1986. Bibcode:1986PhRvB..33.1982E. doi:10.1103/PhysRevB.33.1982. PMID 9938508.
230. ^ Baxter, R. J.; A. J. Guttmann (1988). "Series expansion of the percolation probability for the directed square lattice". J. Phys. A. 21 (15): 3193–3204. Bibcode:1988JPhA...21.3193B. doi:10.1088/0305-4470/21/15/008.
231. ^ a b c Jensen, Iwan (1996). "Low-density series expansions for directed percolation on square and triangular lattices". J. Phys. A. 29 (22): 7013–7040. Bibcode:1996JPhA...29.7013J. doi:10.1088/0305-4470/29/22/007.
232. Blease, J. (1977). "Series expansions for the directed-bond percolation problem". J. Phys. C: Solid State Phys. 10 (7): 917–924. Bibcode:1977JPhC...10..917B. doi:10.1088/0022-3719/10/7/003.
233. ^ a b c Grassberger, P.; Y.-C. Zhang (1996). ""Self-organized" formulation of standard percolation phenomena". Physica A. 224 (1): 169–179. Bibcode:1996PhyA..224..169G. doi:10.1016/0378-4371(95)00321-5.
234. Grassberger, P. (2009). "Local persistence in directed percolation". J. Stat. Mech. Th. Exp. 2009 (8): P08021. arXiv:0907.4021. Bibcode:2009JSMTE..08..021G. doi:10.1088/1742-5468/2009/08/P08021.
235. ^ a b c d Lübeck, S.; R. D. Willmann (2004). "Universal scaling behavior of directed percolation around the upper critical dimension". J. Stat. Phys. 115 (5–6): 1231–1250. arXiv:cond-mat/0401395. Bibcode:2004JSP...115.1231L. CiteSeerX 10.1.1.310.8700. doi:10.1023/B:JOSS.0000028059.24904.3b.
236. ^ Perlsman, E.; S. Havlin (2002). "Method to estimate critical exponents using numerical studies". Europhys. Lett. 58 (2): 176–181. Bibcode:2002EL.....58..176P. doi:10.1209/epl/i2002-00621-7.
237. ^ Adler, Joan; J. Berger, M. A. M. S. Duarte, Y. Meir (1988). "Directed percolation in 3+1 dimensions". Physical Review B. 37 (13): 7529–7533. Bibcode:1988PhRvB..37.7529A. doi:10.1103/PhysRevB.37.7529. PMID 9944046.CS1 maint: multiple names: authors list (link)
238. ^ a b Grassberger, Peter (2009). "Logarithmic corrections in (4 + 1)-dimensional directed percolation". Physical Review E. 79 (5): 052104. arXiv:0904.0804. Bibcode:2009PhRvE..79e2104G. doi:10.1103/PhysRevE.79.052104. PMID 19518501.
239. ^ Wu, F. Y. (2010). "Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices I: Closed-form expressions". Physical Review E. 81 (6): 061110. arXiv:0911.2514. Bibcode:2010PhRvE..81f1110W. doi:10.1103/PhysRevE.81.061110. PMID 20866381.
240. ^ Damavandi, Ojan Khatib; Robert M. Ziff (2015). "Percolation on hypergraphs with four-edges". J. Phys. A: Math. Theor. 48 (40): 405004. arXiv:1506.06125. Bibcode:2015JPhA...48N5004K. doi:10.1088/1751-8113/48/40/405004.
241. ^ a b Wu, F. Y. (2006). "New Critical Frontiers for the Potts and Percolation Models". Physical Review Letters. 96 (9): 090602. arXiv:cond-mat/0601150. Bibcode:2006PhRvL..96i0602W. CiteSeerX 10.1.1.241.6346. doi:10.1103/PhysRevLett.96.090602. PMID 16606250.
242. ^ Reuven Cohen; Shlomo Havlin (2010). Complex Networks: Structure, Robustness and Function. Cambridge University Press.
243. ^ S. V. Buldyrev; R. Parshani; G. Paul; H. E. Stanley; S. Havlin (2010). "Catastrophic cascade of failures in interdependent networks". Nature. 464 (7291): 1025–28. arXiv:0907.1182. Bibcode:2010Natur.464.1025B. doi:10.1038/nature08932. PMID 20393559.
244. ^ Gao, Jianxi; Buldyrev, Sergey V.; Stanley, H. Eugene; Havlin, Shlomo (2011). "Networks formed from interdependent networks". Nature Physics. 8 (1): 40–48. Bibcode:2012NatPh...8...40G. CiteSeerX 10.1.1.379.8214. doi:10.1038/nphys2180. ISSN 1745-2473.