# Lorenz gauge condition

(Redirected from Lorenz gauge)

In electromagnetism, the Lorenz gauge condition or Lorenz gauge (sometimes mistakenly called the Lorentz gauge) is a partial gauge fixing of the electromagnetic vector potential. The condition is that ${\displaystyle \partial _{\mu }A^{\mu }=0.}$ This does not completely determine the gauge: one can still make a gauge transformation ${\displaystyle A^{\mu }\to A^{\mu }+\partial ^{\mu }f,}$ where ${\displaystyle f}$ is a harmonic scalar function (that is, a scalar function satisfying ${\displaystyle \partial _{\mu }\partial ^{\mu }f=0,}$ the equation of a massless scalar field).

The Lorenz condition is used to eliminate the redundant spin-0 component in the (1/2, 1/2) representation theory of the Lorentz group. It is equally used for massive spin-1 fields where the concept of gauge transformations does not apply at all.

The Lorenz condition is named after Ludvig Lorenz. It is a Lorentz invariant condition, and is frequently called the "Lorentz condition" because of confusion with Hendrik Lorentz, after whom Lorentz covariance is named.[1]

## Description

In electromagnetism, the Lorenz condition is generally used in calculations of time-dependent electromagnetic fields through retarded potentials.[2] The condition is

${\displaystyle \partial _{\mu }A^{\mu }\equiv A^{\mu }{}_{,\mu }=0,}$

where ${\displaystyle A^{\mu }}$  is the four-potential, the comma denotes a partial differentiation and the repeated index indicates that the Einstein summation convention is being used. The condition has the advantage of being Lorentz invariant. It still leaves substantial gauge degrees of freedom.

In ordinary vector notation and SI units, the condition is

${\displaystyle {\vec {\nabla }}\cdot {\vec {A}}+{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}=0,}$

where ${\displaystyle {\vec {A}}}$  is the magnetic vector potential and ${\displaystyle \varphi }$  is the electric potential;[3][4] see also gauge fixing.

In Gaussian units the condition is

${\displaystyle {\vec {\nabla }}\cdot {\vec {A}}+{\frac {1}{c}}{\frac {\partial \varphi }{\partial t}}=0.}$ [5][6]

A quick justification of the Lorenz gauge can be found using Maxwell's equations and the relation between the magnetic vector potential and the magnetic field:

${\displaystyle {\vec {\nabla }}\times {\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}}=-{\vec {\nabla }}\times {\frac {\partial {\vec {A}}}{\partial t}}.}$

Therefore,

${\displaystyle {\vec {\nabla }}\times \left({\vec {E}}+{\frac {\partial {\vec {A}}}{\partial t}}\right)=0.}$

Since the curl is zero, that means there is a scalar function ${\displaystyle \varphi }$  such that

${\displaystyle -{\vec {\nabla }}\varphi ={\vec {E}}+{\frac {\partial {\vec {A}}}{\partial t}}.}$

This gives the well known equation for the electric field,

${\displaystyle {\vec {E}}=-{\vec {\nabla }}\varphi -{\frac {\partial {\vec {A}}}{\partial t}}.}$

This result can be plugged into another one of Maxwell's equations,

{\displaystyle {\begin{aligned}{\vec {\nabla }}\times {\vec {B}}&={\vec {\nabla }}\times \left({\vec {\nabla }}\times {\vec {A}}\right)\\&={\vec {\nabla }}\left({\vec {\nabla }}\cdot {\vec {A}}\right)-\nabla ^{2}{\vec {A}}\\&=\mu _{0}{\vec {J}}+{\frac {1}{c^{2}}}{\frac {\partial {\vec {E}}}{\partial t}}\\&=\mu _{0}{\vec {J}}-{\frac {1}{c^{2}}}{\vec {\nabla }}{\frac {\partial \varphi }{\partial t}}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}{\vec {A}}}{\partial t^{2}}}.\end{aligned}}}

This leaves,

${\displaystyle {\vec {\nabla }}\left({\vec {\nabla }}\cdot {\vec {A}}+{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}\right)=\mu _{0}{\vec {J}}-{\frac {1}{c^{2}}}{\frac {\partial ^{2}{\vec {A}}}{\partial t^{2}}}+\nabla ^{2}{\vec {A}}.}$

To have Lorentz invariance, the time derivatives and spatial derivatives must be treated equally (i.e. of the same order). Therefore, it is convenient to choose the Lorenz gauge condition, which gives the result

${\displaystyle \Box {\vec {A}}=\left[{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}-\nabla ^{2}\right]{\vec {A}}=\mu _{0}{\vec {J}}.}$

A similar procedure with a focus on the electric scalar potential and making the same gauge choice will yield

${\displaystyle \Box \varphi =\left[{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}-\nabla ^{2}\right]\varphi ={\frac {1}{\epsilon _{0}}}\rho .}$

These are simpler and more symmetric forms of the inhomogeneous Maxwell's equations. Note that the Coulomb gauge also fixes the problem of Lorentz invariance, but leaves a coupling term with first-order derivatives.

Here

${\displaystyle c={\frac {1}{\sqrt {\epsilon _{0}\mu _{0}}}}}$

is the vacuum velocity of light, and ${\displaystyle \Box }$  is the d'Alembertian operator. These equations are not only valid under vacuum conditions, but also in polarized media,[7] if ${\displaystyle \rho }$  and ${\displaystyle {\vec {J}}}$  are source density and circulation density, respectively, of the electromagnetic induction fields ${\displaystyle {\vec {E}}}$  and ${\displaystyle {\vec {B}}}$  calculated as usual from ${\displaystyle \varphi }$  and ${\displaystyle {\vec {A}}}$  by the equations

${\displaystyle {\vec {E}}=-{\vec {\nabla }}\varphi -{\frac {\partial {\vec {A}}}{\partial t}}}$
${\displaystyle {\vec {B}}={\vec {\nabla }}\times {\vec {A}}}$

The explicit solutions for ${\displaystyle \varphi }$  and ${\displaystyle {\vec {A}}}$  – unique, if all quantities vanish sufficiently fast at infinity – are known as retarded potentials.

## History

When originally published, Lorenz's work was not received well by Maxwell. Maxwell had eliminated the Coulomb electrostatic force from his derivation of the electromagnetic wave equation since he was working in what would nowadays be termed the Coulomb gauge. The Lorenz gauge hence contradicted Maxwell's original derivation of the EM wave equation by introducing a retardation effect to the Coulomb force and bringing it inside the EM wave equation alongside the time varying electric field, which was introduced in Lorenz's paper "On the identity of the vibrations of light with electrical currents". Lorenz's work was the first symmetrizing shortening of Maxwell's equations after Maxwell himself published his 1865 paper. In 1888, retarded potentials came into general use after Heinrich Rudolf Hertz's experiments on electromagnetic waves. In 1895, a further boost to the theory of retarded potentials came after J. J. Thomson's interpretation of data for electrons (after which investigation into electrical phenomena changed from time-dependent electric charge and electric current distributions over to moving point charges).[2]

## References

1. ^ Jackson, J.D.; Okun, L.B. (2001), "Historical roots of gauge invariance", Reviews of Modern Physics, 73 (3): 663–680, arXiv:hep-ph/0012061, Bibcode:2001RvMP...73..663J, doi:10.1103/RevModPhys.73.663
2. ^ a b McDonald, Kirk T. (1997), "The relation between expressions for time-dependent electromagnetic fields given by Jefimenko and by Panofsky and Phillips" (PDF), American Journal of Physics, 65 (11): 1074–1076, Bibcode:1997AmJPh..65.1074M, doi:10.1119/1.18723
3. ^ Jackson, John David (1999). Classical Electrodynamics (3rd ed.). John Wiley & Sons. p. 240. ISBN 0-471-30932-X.
4. ^ Keller, Ole (2012-02-02). Quantum Theory of Near-Field Electrodynamics. Springer Science & Business Media. p. 19. ISBN 9783642174100.
5. ^ Gbur, Gregory J. (2011). Mathematical Methods for Optical Physics and Engineering. Cambridge University Press. p. 59. ISBN 978-0-521-51610-5.
6. ^ Heitler, Walter (1954). The Quantum Theory of Radiation. Courier Corporation. p. 3. ISBN 9780486645582.
7. ^ See, for example, M.V.Cheremisin "Riemann-Silberstein representation of the complete Maxwell equations set", http://lanl.arxiv.org/abs/hep-th/0310036, 2003.