Ion acoustic wave

In plasma physics, an ion acoustic wave is one type of longitudinal oscillation of the ions and electrons in a plasma, much like acoustic waves traveling in neutral gas. However, because the waves propagate through positively charged ions, ion acoustic waves can interact with their electromagnetic fields, as well as simple collisions. In plasmas, ion acoustic waves are frequently referred to as acoustic waves or even just sound waves. They commonly govern the evolution of mass density, for instance due to pressure gradients, on time scales longer than the frequency corresponding to the relevant length scale. Ion acoustic waves can occur in an unmagnetized plasma or in a magnetized plasma parallel to the magnetic field. For a single ion species plasma and in the long wavelength limit, the waves are dispersionless () with a speed given by (see derivation below)

where is Boltzmann's constant, is the mass of the ion, is its charge, is the temperature of the electrons and is the temperature of the ions. Normally γe is taken to be unity, on the grounds that the thermal conductivity of electrons is large enough to keep them isothermal on the time scale of ion acoustic waves, and γi is taken to be 3, corresponding to one-dimensional motion. In collisionless plasmas, the electrons are often much hotter than the ions, in which case the second term in the numerator can be ignored.


We derive the ion acoustic wave dispersion relation for a linearized fluid description of a plasma with electrons and   ion species. We write each quantity as  where subscript 0 denotes the "zero-order" constant equilibrium value, and 1 denotes the first-order perturbation.   is an ordering parameter for linearization, and has the physical value 1. To linearize, we balance all terms in each equation of the same order in  . The terms involving only subscript-0 quantities are all order  and must balance, and terms with one subscript-1 quantity are all order  and balance. We treat the electric field as order-1 ( ) and neglect magnetic fields,

Each species   is described by mass  , charge  , number density  , flow velocity  , and pressure  . We assume the pressure perturbations for each species are a Polytropic process, namely   for species  . To justify this assumption and determine the value of  , one must use a kinetic treatment that solves for the species distribution functions in velocity space. The polytropic assumption essentially replaces the energy equation.

Each species satisfies the continuity equation

and the momentum equation


We now linearize, and work with order-1 equations. Since we do not work with  due to the polytropic assumption (but we do not assume it is zero), to alleviate notation we use  for  . Using the ion continuity equation, the ion momentum equation becomes


We relate the electric field   to the electron density by the electron momentum equation:


We now neglect the left-hand side, which is due to electron inertia. This is valid for waves with frequencies much less than the electron plasma frequency  . This is a good approximation for  , such as ionized matter, but not for situations like electron-hole plasmas in semiconductors, or electron-positron plasmas. The resulting electric field is


Since we have already solved for the electric field, we cannot also find it from Poisson's equation. The ion momentum equation now relates   for each species to  :


We arrive at a dispersion relation via Poisson's equation:


The first bracketed term on the right is zero by assumption (charge-neutral equilibrium). We substitute for the electric field and rearrange to find


  defines the electron Debye length. The second term on the left arises from the   term, and reflects the degree to which the perturbation is not charge-neutral. If   is small we may drop this term. This approximation is sometimes called the plasma approximation.

We now work in Fourier space, and write each order-1 field as   We drop the tilde since all equations now apply to the Fourier amplitudes, and find


  is the wave phase velocity. Substituting this into Poisson's equation gives us an expression where each term is proportional to  . To find the dispersion relation for natural modes, we look for solutions for   nonzero and find:







  where  , so the ion fractions satisfy  , and   is the average over ion species. A unitless version of this equation is


with  ,   is the atomic mass unit,  , and


If   is small (the plasma approximation), we can neglect the second term on the right-hand side, and the wave is dispersionless   with   independent of k.

Dispersion relationEdit

The general dispersion relation given above for ion acoustic waves can be put in the form of an order-N polynomial (for N ion species) in  . All of the roots should be real-positive, since we have neglected damping. The two signs of   correspond to right- and left-moving waves. For a single ion species,


We now consider multiple ion species, for the common case  . For  , the dispersion relation has N-1 degenerate roots  , and one non-zero root


This non-zero root is called the "fast mode", since   is typically greater than all the ion thermal speeds. The approximate fast-mode solution for   is


The N-1 roots that are zero for   are called "slow modes", since   can be comparable to or less than the thermal speed of one or more of the ion species.

A case of interest to nuclear fusion is an equimolar mixture of deuterium and tritium ions ( ). Let us specialize to full ionization ( ), equal temperatures ( ), polytrope exponents  , and neglect the   contribution. The dispersion relation becomes a quadratic in  , namely:


Using   we find the two roots are  .

Another case of interest is one with two ion species of very different masses. An example is a mixture of gold (A=197) and boron (A=10.8), which is currently of interest in hohlraums for laser-driven inertial fusion research. For a concrete example, consider   and   for both ion species, and charge states Z=5 for boron and Z=50 for gold. We leave the boron atomic fraction   unspecified (note  ). Thus,   and  .


Ion acoustic waves are damped both by Coulomb collisions and collisionless Landau damping. The Landau damping occurs on both electrons and ions, with the relative importance depending on parameters.

See alsoEdit

External linksEdit