# Gibbons–Hawking space

This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2012) (Learn how and when to remove this template message) |

In mathematical physics, a **Gibbons–Hawking space**, named after Gary Gibbons and Stephen Hawking, is essentially a hyperkähler manifold with an extra U(1) symmetry.^{[1]} (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.^{[2]}) Gibbons–Hawking spaces, especially ambipolar ones,^{[3]} find an application in the study of black hole microstate geometries.^{[1]}^{[4]}

## See alsoEdit

## ReferencesEdit

- ^
^{a}^{b}Mathur, Samir D. (22 January 2009). "The fuzzball paradigm for black holes: FAQ" (PDF). Ohio State University. p. 20. Retrieved 16 April 2012. **^**Wang, Chih-Wei (2007).*Five Dimensional Microstate Geometries*. ProQuest. p. 67. ISBN 978-0-549-39022-0. Retrieved 16 April 2012.**^**Bellucci, Stefano (2008).*Supersymmetric Mechanics: Attractors and Black Holes in Supersymmetric Gravity*. Springer. p. 5. ISBN 978-3-540-79522-3. Retrieved 16 April 2012.**^**Bena, Iosif; Nikolay Bobev; Stefano Giusto; Clement Ruefa; Nicholas P. Warner (March 2011). "An infinite-dimensional family of black-hole microstate geometries" (PDF).*Journal of High Energy Physics*. International School for Advanced Studies.!.**3**(22). doi:10.1007/JHEP03(2011)022.