# File:Light dispersion conceptual waves.gif

Light_dispersion_conceptual_waves.gif(640 × 480 pixels, file size: 1.14 MB, MIME type: image/gif, looped, 90 frames, 4.5 s)

## Summary

Description
English: Schematic animation of a continuous beam of light being dispersed by a prism. The white beam represents many wavelengths of visible light, of which 7 are shown, as they travel through a vacuum with equal speeds c. The prism causes the light to slow down, which bends its path by the process of refraction. This effect occurs more strongly in the shorter wavelengths (violet end) than in the longer wavelengths (red end), thereby dispersing the constituents. As exiting the prism, each component returns to the same original speed and is refracted again.
Explanation

This is a conceptual animation of the dispersion of light as it travels through a triangular prism.

In vacuum (shown in black), light of any wavelength will travel at a fixed speed, c. But light slows down in a different medium (such as glass or water), and light of shorter wavelengths (like indigo) will tend to travel slower than light of longer wavelengths (like red)

White light, represented here by a white beam, is actually made out of light of several frequencies (colors) travelling together. These basic frequencies of visible light are part of what we call visible spectrum, and it is only tiny part of the entire electromagnetic spectrum.

As white light enters a medium (in this case, the prism), each of its composing wavelengths will travel at a different speed in the new medium, and this change in speed is what bends the path in which light is travelling. This is the phenomenon we call refraction. The ratio between the speed of light in vacuum and the speed of light in a medium is what we call index of refraction, and this value is specific for a given wavelength and medium.

Since light of different wavelengths will change direction by a different amount, we will experience a division of white light in its composing spectral colors, represented here by colored waves. This is what we call dispersion.

Once the basic frequencies are separated in this animation, we can easily see the difference on their speeds. Red, with a long wavelength, passes through almost without any change, whereas indigo (with short wavelength) is left behind by all the other colors. However, this difference in speed does not hold in vacuum, and this can be seen on how all light exiting the prism will once again travel at the constant speed of light in vacuum.

This is all just an easy way of seeing it, so it is important to stress once again the fact that this model is not entirely accurate, and white light can't exist on its own (as can be misunderstood from the beam).

Date
Source Own work
Author Lucas V. Barbosa
Other versions

## Licensing

 I, the copyright holder of this work, release this work into the public domain. This applies worldwide.In some countries this may not be legally possible; if so:I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

## Assessment

 Quality image This image has been assessed using the Quality image guidelines and is considered a Quality image.
 This file was selected as the media of the day for 31 August 2019. It was captioned as follows: English: Schematic animation of a continuous beam of light being dispersed by a prism. The white beam represents many wavelengths of visible light, of which 7 are shown, as they travel through a vacuum with equal speeds c. The prism causes the light to slow down, which bends its path by the process of refraction. This effect occurs more strongly in the shorter wavelengths (violet end) than in the longer wavelengths (red end), thereby dispersing the constituents. As exiting the prism, each component returns to the same original speed and is refracted again. Čeština: Schematická animace rozkladu viditelného světla lomem na optickém hranolu.English: Schematic animation of a continuous beam of light being dispersed by a prism. The white beam represents many wavelengths of visible light, of which 7 are shown, as they travel through a vacuum with equal speeds c. The prism causes the light to slow down, which bends its path by the process of refraction. This effect occurs more strongly in the shorter wavelengths (violet end) than in the longer wavelengths (red end), thereby dispersing the constituents. As exiting the prism, each component returns to the same original speed and is refracted again.Español: Animación esquemática de un haz continuo de luz dispersado por un prisma. El haz blanco representa muchas longitudes de onda de luz visible, de las cuales se muestran 7, al atravesar un vacío a la misma velocidad c. El prisma hace que la luz se ralentice, curvando su camino por el proceso de refracción. Este efecto es más pronunciado en las longitudes de onda más cortas (como el extremo violeta) que en las longitudes de onda más largas (como el extremo rojo), dispersando así los componentes. Al salir del prisma, cada componente vuelve a la misma velocidad original y se refracta nuevamente.Эрзянь: Схемань анимациясь свал апак сезне валдонь кермине, кона пансезь призмасо. Ало валдось те неявиксэв, 7 эйстэст невтезь, секс мекс сын ютыть вакуум трокс венке чиеманть марто.Polski: Animacja schematycznie przedstawiająca rozszczepienie wiązki światła w pryzmacie. Biała wiązka reprezentuje wiele długości fal światła widzialnego, z których siedem porusza się w próżni z prędkością światła. Pryzmat powoduje spowolnienie światła, które zmienia też kierunek w wyniku refrakcji. Załamanie jest mocniejsze dla krótszych długości fal („koniec fioletowy”) niż dla dłuższych długości fal („koniec czerwony”), co powoduje rozszczepienie wiązki na poszczególne składowe. Podczas wychodzeniu z pryzmatu składowe przyspieszają do prędkości światła oraz zostają ponownie załamane.

### Captions

Dispersion of light

## File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:09, 6 April 2010640 × 480 (1.14 MB)KalkiReverted to version as of 04:14, 27 February 2008
17:07, 6 April 2010640 × 480 (1.17 MB)KalkiReverted to version as of 03:31, 27 February 2008
04:14, 27 February 2008640 × 480 (1.14 MB)LucasVB
03:31, 27 February 2008640 × 480 (1.17 MB)LucasVB{{Information |Description=Copnceptual animation of dispersion of light in a prism. Using waves. |Source=self-made |Date=2008-02-27 |Author= Lucas V. Barbosa (aka Kieff) |Permission=Public domain |other_versions=Light_dispersion_conceptual.
04:10, 24 December 2007640 × 480 (348 KB)LucasVB{{Information |Description=Dispersion of light inside a prism. Now with waves. |Source=Self |Date=2007-12-24 |Author=Lucas V. Barbosa |Permission=Public Domain |other_versions=Image:Light_dispersion_conceptual.gif }}

## Global file usage

The following other wikis use this file:

• Usage on af.wikipedia.org
• Usage on am.wikipedia.org
• Usage on ar.wikipedia.org
• Usage on as.wikipedia.org
• Usage on azb.wikipedia.org
• Usage on az.wikipedia.org
• Usage on ba.wikipedia.org
• Usage on bg.wikipedia.org
• Usage on bn.wikipedia.org
• Usage on bs.wikipedia.org
• Usage on ca.wikipedia.org
• Usage on cs.wikipedia.org
• Usage on da.wikipedia.org
• Usage on el.wikipedia.org
• Usage on en.wikibooks.org
• Usage on en.wikiquote.org
• Usage on en.wikisource.org
• Usage on en.wikiversity.org
• Usage on es.wikipedia.org

View more global usage of this file.