# Electroweak interaction

In particle physics, the **electroweak interaction** is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,^{[a]}^{[verification needed]} they would merge into a single **electroweak force**. Thus, if the universe is hot enough (approximately 10^{15} K, a temperature not exceeded since shortly after the Big Bang), then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch, the electroweak force split into the electromagnetic and weak force.

Sheldon Glashow, Abdus Salam,^{[1]}^{[2]} and Steven Weinberg^{[3]} were awarded the 1979 Nobel Prize in Physics for their contributions to the unification of the weak and electromagnetic interaction between elementary particles.^{[4]}^{[5]} The existence of the electroweak interactions was experimentally established in two stages, the first being the discovery of neutral currents in neutrino scattering by the Gargamelle collaboration in 1973, and the second in 1983 by the UA1 and the UA2 collaborations that involved the discovery of the W and Z gauge bosons in proton–antiproton collisions at the converted Super Proton Synchrotron. In 1999, Gerardus 't Hooft and Martinus Veltman were awarded the Nobel prize for showing that the electroweak theory is renormalizable.

## Contents

## FormulationEdit

Mathematically, electromagnetism is unified with the weak interactions in the Weinberg–Salam theory as a Yang–Mills field with an *SU*(2) × *U*(1) gauge group. The corresponding gauge bosons are the **three** W bosons of weak isospin from *SU(2)* (*W _{1}, W_{2}*, and

*W*), and the

_{3}*B*boson of weak hypercharge from

*U(1)*, respectively, all of which are massless.

In the Standard Model, the ^{}_{}W^{±}_{} and ^{}_{}Z^{0}_{} bosons, and the photon, are produced by the spontaneous symmetry breaking of the **electroweak symmetry** from *SU*(2) × *U*(1)_{Y} to *U*(1)_{em}, caused by the Higgs mechanism (see also Higgs boson).^{[6]}^{[7]}^{[8]}^{[9]} *U*(1)_{Y} and *U*(1)_{em} are different copies of *U*(1); the generator of *U*(1)_{em} is given by *Q* = *Y*/2 + *T*_{3}, where *Y* is the generator of *U*(1)_{Y} (called the weak hypercharge), and *T*_{3} is one of the *SU*(2) generators (a component of weak isospin).

The spontaneous symmetry breaking makes the W_{3} and B bosons coalesce into two different bosons – the ^{}_{}Z^{0}_{} boson, and the photon (γ),

where *θ _{W}* is the

*weak mixing angle*. The axes representing the particles have essentially just been rotated, in the (

*W*

_{3},

*B*) plane, by the angle

*θ*. This also introduces a mismatch between the mass of the

_{W}^{}

_{}Z

^{0}

_{}and the mass of the

^{}

_{}W

^{±}

_{}particles (denoted as

*M*and

_{Z}*M*, respectively),

_{W}The *W _{1}* and

*W*bosons, in turn, combine to give massive charged bosons

_{2}The distinction between electromagnetism and the weak force arises because there is a (nontrivial) linear combination of *Y* and *T*_{3} that vanishes for the Higgs boson (it is an eigenstate of both *Y* and *T*_{3}, so the coefficients may be taken as −*T*_{3} and *Y*): *U*(1)_{em} is defined to be the group generated by this linear combination, and is unbroken because it does not interact with the Higgs.

## LagrangianEdit

### Before electroweak symmetry breakingEdit

The Lagrangian for the electroweak interactions is divided into four parts before electroweak symmetry breaking becomes manifest,

The term describes the interaction between the three W vector bosons and the B vector boson,

- ,

where ( ) and are the field strength tensors for the weak isospin and weak hypercharge gauge fields.

is the kinetic term for the Standard Model fermions. The interaction of the gauge bosons and the fermions are through the gauge covariant derivative,

- ,

where the subscript i runs over the three generations of fermions; Q, u, and d are the left-handed doublet, right-handed singlet up, and right handed singlet down quark fields; and L and e are the left-handed doublet and right-handed singlet electron fields.

The h term describes the Higgs field and its interactions with itself and the gauge bosons,

The y term displays the Yukawa interaction with the fermions,

and generates their masses, manifest when the Higgs field acquires a nonzero vacuum expectation value, discussed next.

### After electroweak symmetry breakingEdit

The Lagrangian reorganizes itself as the Higgs boson acquires a non-vanishing vacuum expectation value dictated by the potential of the previous section. As a result of this rewriting, the symmetry breaking becomes manifest.

Due to its complexity, this Lagrangian is best described by breaking it up into several parts as follows.

The kinetic term contains all the quadratic terms of the Lagrangian, which include the dynamic terms (the partial derivatives) and the mass terms (conspicuously absent from the Lagrangian before symmetry breaking)

where the sum runs over all the fermions of the theory (quarks and leptons), and the fields , , , and are given as

with X to be replaced by the relevant field, and *f ^{abc}* by the structure constants of the appropriate gauge group.

The neutral current and charged current components of the Lagrangian contain the interactions between the fermions and gauge bosons,

- ,

where e= *g* sin *θ _{W}*=

*g'*cos

*θ*; while the electromagnetic current and the neutral weak current are

_{W}- ,

and

where and are the fermions' electric charges and weak isospin.

The charged current part of the Lagrangian is given by

where contains the Higgs three-point and four-point self interaction terms,

contains the Higgs interactions with gauge vector bosons,

contains the gauge three-point self interactions,

contains the gauge four-point self interactions,

contains the Yukawa interactions between the fermions and the Higgs field,

Note the factors in the weak couplings: these factors project out the left handed components of the spinor fields. This is why electroweak theory is said to be a chiral theory.

## See alsoEdit

## NotesEdit

**^**The particular number 246 GeV is taken to be the vacuum expectation value of the Higgs field (where is the Fermi coupling constant).

## ReferencesEdit

**^**Glashow, S. (1959). "The renormalizability of vector meson interactions."*Nucl. Phys.***10**, 107.**^**Salam, A.; Ward, J. C. (1959). "Weak and electromagnetic interactions".*Nuovo Cimento*.**11**(4): 568–577. Bibcode:1959NCim...11..568S. doi:10.1007/BF02726525.**^**Weinberg, S (1967). "A Model of Leptons" (PDF).*Phys. Rev. Lett*.**19**: 1264–66. Bibcode:1967PhRvL..19.1264W. doi:10.1103/PhysRevLett.19.1264. Archived from the original (PDF) on 2012-01-12.**^**S. Bais (2005).*The Equations: Icons of knowledge*. p. 84. ISBN 0-674-01967-9.**^**"The Nobel Prize in Physics 1979". The Nobel Foundation. Retrieved 2008-12-16.**^**F. Englert; R. Brout (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons".*Physical Review Letters*.**13**(9): 321–323. Bibcode:1964PhRvL..13..321E. doi:10.1103/PhysRevLett.13.321.**^**P.W. Higgs (1964). "Broken Symmetries and the Masses of Gauge Bosons".*Physical Review Letters*.**13**(16): 508–509. Bibcode:1964PhRvL..13..508H. doi:10.1103/PhysRevLett.13.508.**^**G.S. Guralnik; C.R. Hagen; T.W.B. Kibble (1964). "Global Conservation Laws and Massless Particles".*Physical Review Letters*.**13**(20): 585–587. Bibcode:1964PhRvL..13..585G. doi:10.1103/PhysRevLett.13.585.**^**G.S. Guralnik (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles".*International Journal of Modern Physics A*.**24**(14): 2601–2627. arXiv:0907.3466. Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431.

## Further readingEdit

### General readersEdit

- B. A. Schumm (2004).
*Deep Down Things: The Breathtaking Beauty of Particle Physics*. Johns Hopkins University Press. ISBN 0-8018-7971-X. Conveys much of the Standard Model with no formal mathematics. Very thorough on the weak interaction.

### TextsEdit

- D. J. Griffiths (1987).
*Introduction to Elementary Particles*. John Wiley & Sons. ISBN 0-471-60386-4. - W. Greiner; B. Müller (2000).
*Gauge Theory of Weak Interactions*. Springer. ISBN 3-540-67672-4. - G. L. Kane (1987).
*Modern Elementary Particle Physics*. Perseus Books. ISBN 0-201-11749-5.

### ArticlesEdit

- E. S. Abers; B. W. Lee (1973). "Gauge theories".
*Physics Reports*.**9**: 1–141. Bibcode:1973PhR.....9....1A. doi:10.1016/0370-1573(73)90027-6. - Y. Hayato; et al. (1999). "Search for Proton Decay through p → νK
^{+}in a Large Water Cherenkov Detector".*Physical Review Letters*.**83**(8): 1529. arXiv:hep-ex/9904020. Bibcode:1999PhRvL..83.1529H. doi:10.1103/PhysRevLett.83.1529. - J. Hucks (1991). "Global structure of the standard model, anomalies, and charge quantization".
*Physical Review D*.**43**(8): 2709–2717. Bibcode:1991PhRvD..43.2709H. doi:10.1103/PhysRevD.43.2709. - S. F. Novaes (2000). "Standard Model: An Introduction". arXiv:hep-ph/0001283.
- D. P. Roy (1999). "Basic Constituents of Matter and their Interactions – A Progress Report". arXiv:hep-ph/9912523.