dodecaborate ion

The dodecaborate(12) anion, [B12H12]2-, has the structure of a regular icosahedron of boron atoms, with each boron atom being attached to a hydrogen atom. Its symmetry is classified by the molecular point group Ih.


Synthesis and reactionsEdit

The existence of the dodecaborate(12) anion, [B12H12]2-, was predicted by H. C. Longuet-Higgins and M. de V. Roberts in 1955.[1] Hawthorne and Pitochelli first made it 5 years later, by the reaction of iododecarborane with triethylamine in benzene solution at 80 °C.[2] It is more conveniently prepared in two steps from sodium borohydride. First the borohydride is converted into a triborate anion using the etherate of boron trifluoride:

5 NaBH4 + BF3 → 2 NaB3H8 + 3 NaF + 2 H2

Pyrolysis of the triborate gives the twelve boron cluster as the sodium salt.[3] A variety of other synthetic methods have been published.

Salts of the dodecaborate ion are stable in air and do not react with hot aqueous sodium hydroxide or hydrochloric acid. The anion can be electrochemically oxidised to [B24H23]3−.[4]

Substituted derivativesEdit

Salts of B12H2−
undergo hydroxylation with hydrogen peroxide to give salts of [B12(OH)12]2−.[5] The hydrogen atoms in the ion [B12H12]2- can be replaced by the halogens with various degrees of substitution. The following numbering scheme is used to identify the products. The first boron atom is numbered 1, then the closest ring of five atoms around it is numbered anticlockwise from 2 to 6. The next ring of boron atoms is started from 7 for the atoms closest to number 2 and 3, and counts anticlockwise to 11. The atom opposite the original is numbered 12. A related derivative is [B12(CH3)12]2−. The icosahedron of boron atoms is aromatic in nature.[citation needed]

Under kilobar pressure of carbon monoxide [B12H12]2− reacts to form the carbonyl derivatives [B12H11CO] and the 1,12- and 1,7-isomers of B12H10(CO)2. The para disubstitution at the 1,12 is unusual. In water the dicarbonyls appear to form carboxylic ions: [B12H10(CO)CO2H] and [B12H10(CO2H)2]2−.[citation needed]

Potential applicationsEdit

Compounds based on the ion [B12H12]2− have been evaluated for solvent extraction of the radioactive ions 152Eu3+ and 241Am3+.[6]

[B12H12]2−, [B12(OH)12]2− and [B12(OMe)12]2− show promise for use in drug delivery. They form "closomers," which have been used to make nontargeted high-performance MRI contrast agents which are persistent in tumor tissue.[7]

Salts of [B12H12]2− are potential therapeutic agents in cancer treatment. For applications in boron neutron capture therapy (BNCT), derivatives of closo-dodecaborate increase the specificity of neutron irradiation treatment. Neutron irradiation converts nonradioactive dodecaborate containing 10B to 11B, which upon fission process emits an alpha particle near the tumor.[8]


  1. ^ Longuet-Higgins, H.C; Roberts, M. de V. (1955). "The electronic structure of an icosahedron of boron atoms". Proc. Roy. Soc. A. 230: 110–119. doi:10.1098/rspa.1955.0115.
  2. ^ Pitochelli, Anthony R.; Hawthorne, Frederick M. (1960). "The Isolation of Icosahedral B12H2−
    Ion". J. Am. Chem. Soc. 82 (12): 3228–3229. doi:10.1021/ja01497a069.
  3. ^ Miller, H. C.; Muetterties, E. L. (1967). "Borane Anions". Inorganic Syntheses. Inorganic Syntheses. 10: 81–91. doi:10.1002/9780470132418.ch16. ISBN 9780470132418.
  4. ^ Sivaev, Igor B.; Bregadze, Vladimir I.; Sjöberg, Stefan (2002). "Chemistry of closo-Dodecaborate Anion [B12H12]2-: A Review". Collection of Czechoslovak Chemical Communications. 67 (6): 679–727. doi:10.1135/cccc20020679.
  5. ^ Lee, Mark W., Jr.; Safronov, Alexander V.; Jalisatgi, Satish S.; Hawthorne, M. Frederick (2010). "Cesium dodecahydroxy-closo-dodecaborate, Cs2[B12(OH)12]". Inorganic Syntheses. Inorganic Syntheses. 35: 63–66. doi:10.1002/9780470651568.ch2. ISBN 9780470651568.CS1 maint: Multiple names: authors list (link)
  6. ^ Bernard, R., Cornu, D., Gruner, B., Dozol, J., Miele, P., & Bonnetet, B. (2002). Synthesis of [B12H12]2– based extractants and their application for the treatment of nuclear wastes. Journal of Organometallic Chemistry, 83-90.
  7. ^ Axtell, J. C. (2018). "Synthesis and Applications of Perfunctionalized Boron Clusters". Inorganic Chemistry. 57 (5): 2333–2350. doi:10.1021/acs.inorgchem.7b02912.
  8. ^ Tachikawa, S.; Miyoshi, T.; Koganei, H.; El-Zaria, M.E.; Vinas, C.; Suzuki, M.; Ono, K.; Nakamura, H. (2014). "Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy". Chemical Communications. 50 (82): 12325–12328. doi:10.1039/c4cc04344h.