Dirac algebra
This article needs additional citations for verification. (December 2013) (Learn how and when to remove this template message) 
In mathematical physics, the Dirac algebra is the Clifford algebra Cℓ_{4}(C), which may be thought of as Cℓ_{1,3}(C). This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin½ particles with a matrix representation with the Dirac gamma matrices, which represent the generators of the algebra.
The gamma elements have the defining relation
where are the components of the Minkowski metric with signature (+ − − −) and is the identity element of the algebra (the identity matrix in the case of a matrix representation). This allows the definition of a scalar product
where
 and .
Higher powersEdit
The sigmas^{[1]}

(I4)
only 6 of which are nonzero due to antisymmetry of the bracket, span the sixdimensional representation space of the tensor (1, 0) ⊕ (0, 1)representation of the Lorentz algebra inside . Moreover, they have the commutation relations of the Lie algebra,^{[2]}

(I5)
and hence constitute a representation of the Lorentz algebra (in addition to spanning a representation space) sitting inside the (1/2, 0) ⊕ (0, 1/2) spin representation.
Derivation starting from the Dirac and Klein–Gordon equationEdit
The defining form of the gamma elements can be derived if one assumes the covariant form of the Dirac equation:
and the Klein–Gordon equation:
to be given, and requires that these equations lead to consistent results.
Multiplying the Dirac equation by its conjugate equation yields:
The demand of consistency with the Klein–Gordon equation leads immediately to:
where is the anticommutator, is the Minkowski metric with signature (+ − − −) and is the 4x4 unit matrix.^{[3]}
Cℓ_{1,3}(ℂ) and Cℓ_{1,3}(ℝ)Edit
The Dirac algebra can be regarded as a complexification of the real spacetime algebra Cℓ_{1,3}(ℝ):
Cℓ_{1,3}(ℝ) differs from Cℓ_{1,3}(ℂ): in Cℓ_{1,3}(ℝ) only real linear combinations of the gamma matrices and their products are allowed.
Proponents of geometric algebra strive to work with real algebras wherever that is possible. They argue that it is generally possible (and usually enlightening) to identify the presence of an imaginary unit in a physical equation. Such units arise from one of the many quantities in a real Clifford algebra that square to −1, and these have geometric significance because of the properties of the algebra and the interaction of its various subspaces. Some of these proponents also question whether it is necessary or even useful to introduce an additional imaginary unit in the context of the Dirac equation.
In contemporary practice, the Dirac algebra continues to be the standard environment the spinors of the Dirac equation "live" in, rather than the spacetime algebra.
ReferencesEdit
 ^ Weinberg 2002, Equation 5.4.6
 ^ Weinberg 2002, Equation 5.4.4 Section 5.4.
 ^ see also: Victoria Martin, Lecture Notes SH Particle Physics 2012, Lecture Notes 5–7, Section 5.5 The gamma matrices