# Bessel potential

In mathematics, the Bessel potential is a potential (named after Friedrich Wilhelm Bessel) similar to the Riesz potential but with better decay properties at infinity.

If s is a complex number with positive real part then the Bessel potential of order s is the operator

${\displaystyle (I-\Delta )^{-s/2}}$

where Δ is the Laplace operator and the fractional power is defined using Fourier transforms.

Yukawa potentials are particular cases of Bessel potentials for ${\displaystyle s=2}$ in the 3-dimensional space.

## Representation in Fourier space

The Bessel potential acts by multiplication on the Fourier transforms: for each ${\displaystyle \xi \in \mathbb {R} ^{d}}$

${\displaystyle {\mathcal {F}}((I-\Delta )^{-s/2}u)(\xi )={\frac {{\mathcal {F}}u(\xi )}{(1+4\pi ^{2}\vert \xi \vert ^{2})^{s/2}}}.}$

## Integral representations

When ${\displaystyle s>0}$ , the Bessel potential on ${\displaystyle \mathbb {R} ^{d}}$  can be represented by

${\displaystyle (I-\Delta )^{-s/2}u=G_{s}\ast u,}$

where the Bessel kernel ${\displaystyle G_{s}}$  is defined for ${\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}}$  by the integral formula [1]

${\displaystyle G_{s}(x)={\frac {1}{(4\pi )^{s/2}\Gamma (s/2)}}\int _{0}^{\infty }{\frac {e^{-{\frac {\pi \vert x\vert ^{2}}{y}}-{\frac {y}{4\pi }}}}{y^{1+{\frac {d-s}{2}}}}}\,\mathrm {d} y.}$

Here ${\displaystyle \Gamma }$  denotes the Gamma function. The Bessel kernel can also be represented for ${\displaystyle x\in \mathbb {R} ^{d}\setminus \{0\}}$  by[2]

${\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{(2\pi )^{\frac {d-1}{2}}2^{\frac {s}{2}}\Gamma ({\frac {s}{2}})\Gamma ({\frac {d-s+1}{2}})}}\int _{0}^{\infty }e^{-\vert x\vert t}{\Big (}t+{\frac {t^{2}}{2}}{\Big )}^{\frac {d-s-1}{2}}\,\mathrm {d} t.}$

## Asymptotics

At the origin, one has as ${\displaystyle \vert x\vert \to 0}$ ,[3]

${\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {d-s}{2}})}{2^{s}\pi ^{s/2}\vert x\vert ^{d-s}}}(1+o(1))\quad {\text{ if }}0
${\displaystyle G_{d}(x)={\frac {1}{2^{d-1}\pi ^{d/2}}}\ln {\frac {1}{\vert x\vert }}(1+o(1)),}$
${\displaystyle G_{s}(x)={\frac {\Gamma ({\frac {s-d}{2}})}{2^{s}\pi ^{s/2}}}(1+o(1))\quad {\text{ if }}s>d.}$

In particular, when ${\displaystyle 0  the Bessel potential behaves asymptotically as the Riesz potential.

At infinity, one has, as ${\displaystyle \vert x\vert \to \infty }$ , [4]

${\displaystyle G_{s}(x)={\frac {e^{-\vert x\vert }}{2^{\frac {d+s-1}{2}}\pi ^{\frac {d-1}{2}}\Gamma ({\frac {s}{2}})\vert x\vert ^{\frac {d+1-s}{2}}}}(1+o(1)).}$

## References

1. ^ Stein, Elias (1970). Singular integrals and differentiability properties of functions. Princeton University Press. Chapter V eq. (26). ISBN 0-691-08079-8.
2. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,2).
3. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11. 385–475, (4,3).
4. ^ N. Aronszajn; K. T. Smith (1961). "Theory of Bessel potentials I". Ann. Inst. Fourier. 11: 385–475.