# Beal conjecture

(Redirected from Beal's conjecture)

The Beal conjecture is the following conjecture in number theory:

 Unsolved problem in mathematics:Is the Beal conjecture true?(more unsolved problems in mathematics)
If
${\displaystyle A^{x}+B^{y}=C^{z},}$
where A, B, C, x, y, and z are positive integers with x, y, z > 2, then A, B, and C have a common prime factor.

Equivalently,

There are no solutions to the above equation in positive integers A, B, C, x, y, z with A, B, and C being pairwise coprime and all of x, y, z being greater than 2.

## References

1. ^ "Beal Conjecture". American Mathematical Society. Retrieved 21 August 2016.
2. ^ "Beal Conjecture". Bealconjecture.com. Retrieved 2014-03-06.
3. ^ a b R. Daniel Mauldin (1997). "A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem" (PDF). Notices of the AMS. 44 (11): 1436–1439.
4. ^ a b "Beal Prize". Ams.org. Retrieved 2014-03-06.
5. ^ Bennett, Michael A.; Chen, Imin; Dahmen, Sander R.; Yazdani, Soroosh (June 2014). "Generalized Fermat Equations: A Miscellany" (PDF). Simon Fraser University. Retrieved 1 October 2016.
6. ^ "Mauldin / Tijdeman-Zagier Conjecture". Prime Puzzles. Retrieved 1 October 2016.
7. ^ a b Elkies, Noam D. (2007). "The ABC's of Number Theory" (PDF). The Harvard College Mathematics Review. 1 (1).
8. ^ Michel Waldschmidt (2004). "Open Diophantine Problems". Moscow Mathematics. 4: 245–305. doi:10.17323/1609-4514-2004-4-1-245-305.
9. ^ a b Crandall, Richard; Pomerance, Carl (2000). Prime Numbers: A Computational Perspective. Springer. p. 417. ISBN 978-0387-25282-7.
10. ^ Nitaj, Abderrahmane (1995). "On A Conjecture of Erdos on 3-Powerful Numbers". Bulletin of the London Mathematical Society. 27 (4): 317–318. CiteSeerX 10.1.1.24.563. doi:10.1112/blms/27.4.317.
11. ^ Wacław Sierpiński, Pythagorean triangles, Dover, 2003, p. 55 (orig. Graduate School of Science, Yeshiva University, 1962).
12. ^ "Billionaire Offers $1 Million to Solve Math Problem | ABC News Blogs – Yahoo". Gma.yahoo.com. 2013-06-06. Retrieved 2014-03-06. 13. ^ a b H. Darmon and L. Merel. Winding quotients and some variants of Fermat’s Last Theorem, J. Reine Angew. Math. 490 (1997), 81–100. 14. Frits Beukers (January 20, 2006). "The generalized Fermat equation" (PDF). Staff.science.uu.nl. Retrieved 2014-03-06. 15. ^ Poonen, Bjorn; Schaefer, Edward F.; Stoll, Michael (2005). "Twists of X(7) and primitive solutions to x2 + y3 = z7". Duke Mathematical Journal. 137: 103–158. arXiv:math/0508174v1. doi:10.1215/S0012-7094-07-13714-1. 16. ^ Brown, David (2009). "Primitive Integral Solutions to x2 + y3 = z10". arXiv:0911.2932 [math.NT]. 17. ^ "The Diophantine Equation" (PDF). Math.wisc.edu. Retrieved 2014-03-06. 18. ^ Siksek, Samir; Stoll, Michael (2013). "The Generalised Fermat Equation x2 + y3 = z15". Archiv der Mathematik. 102 (5): 411–421. arXiv:1309.4421. doi:10.1007/s00013-014-0639-z. 19. ^ Dahmen, Sander R.; Siksek, Samir (2013). "Perfect powers expressible as sums of two fifth or seventh powers". arXiv:1309.4030 [math.NT]. 20. ^ Darmon, H.; Granville, A. (1995). "On the equations zm = F(x, y) and Axp + Byq = Czr". Bulletin of the London Mathematical Society. 27 (6): 513–43. doi:10.1112/blms/27.6.513. 21. ^ Norvig, Peter. "Beal's Conjecture: A Search for Counterexamples". Norvig.com. Retrieved 2014-03-06. 22. ^ Walter Hickey (5 June 2013). "If You Can Solve This Math Problem, Then A Texas Banker Will Give You$1 Million". Business Insider. Retrieved 8 July 2016.
23. ^ "\$1 Million Math Problem: Banker D. Andrew Beal Offers Award To Crack Conjecture Unsolved For 30 Years". International Science Times. 5 June 2013. Archived from the original on 29 September 2017.
24. ^ "Neglected Gaussians". Mathpuzzle.com. Retrieved 2014-03-06.