Angular momentum operator
In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic physics and other quantum problems involving rotational symmetry. In both classical and quantum mechanical systems, angular momentum (together with linear momentum and energy) is one of the three fundamental properties of motion.^{[1]}
There are several angular momentum operators: total angular momentum (usually denoted J), orbital angular momentum (usually denoted L), and spin angular momentum (spin for short, usually denoted S). The term angular momentum operator can (confusingly) refer to either the total or the orbital angular momentum. Total angular momentum is always conserved, see Noether's theorem.
Contents
OverviewEdit
In quantum mechanics, angular momentum can refer to one of three different, but related things.
Orbital angular momentumEdit
The classical definition of angular momentum is . The quantummechanical counterparts of these objects share the same relationship:
where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator. L (just like p and r) is a vector operator (a vector whose components are operators), i.e. where L_{x}, L_{y}, L_{z} are three different quantummechanical operators.
In the special case of a single particle with no electric charge and no spin, the orbital angular momentum operator can be written in the position basis as:
where ∇ is the vector differential operator, del.
Spin angular momentumEdit
There is another type of angular momentum, called spin angular momentum (more often shortened to spin), represented by the spin operator S. Spin is often depicted as a particle literally spinning around an axis, but this is only a metaphor: spin is an intrinsic property of a particle, unrelated to any sort of motion in space. All elementary particles have a characteristic spin, which is usually nonzero. For example, electrons always have "spin 1/2" while photons always have "spin 1" (details below).
Total angular momentumEdit
Finally, there is total angular momentum J, which combines both the spin and orbital angular momentum of a particle or system:
Conservation of angular momentum states that J for a closed system, or J for the whole universe, is conserved. However, L and S are not generally conserved. For example, the spin–orbit interaction allows angular momentum to transfer back and forth between L and S, with the total J remaining constant.
Commutation relationsEdit
Commutation relations between componentsEdit
The orbital angular momentum operator is a vector operator, meaning it can be written in terms of its vector components . The components have the following commutation relations with each other:^{[2]}
where [ , ] denotes the commutator
This can be written generally as
 ,
where l, m, n are the component indices (1 for x, 2 for y, 3 for z), and ε_{lmn} denotes the LeviCivita symbol.
A compact expression as one vector equation is also possible:^{[3]}
The commutation relations can be proved as a direct consequence of the canonical commutation relations , where δ_{lm} is the Kronecker delta.
There is an analogous relationship in classical physics:^{[4]}
where L_{n} is a component of the classical angular momentum operator, and is the Poisson bracket.
The same commutation relations apply for the other angular momentum operators (spin and total angular momentum):^{[5]}
 .
These can be assumed to hold in analogy with L. Alternatively, they can be derived as discussed below.
These commutation relations mean that L has the mathematical structure of a Lie algebra, and the ε_{lmn} are its structure constants. In this case, the Lie algebra is SU(2) or SO(3) in physics notation ( or respectively in mathematics notation), i.e. Lie algebra associated with rotations in three dimensions. The same is true of J and S. The reason is discussed below. These commutation relations are relevant for measurement and uncertainty, as discussed further below.
Commutation relations involving vector magnitudeEdit
Like any vector, a magnitude can be defined for the orbital angular momentum operator,
 .
L^{2} is another quantum operator. It commutes with the components of L,
One way to prove that these operators commute is to start from the [L_{ℓ}, L_{m}] commutation relations in the previous section:
Click [show] on the right to see a proof of [L^{2}, L_{x}] = 0, starting from the [L_{ℓ}, L_{m}] commutation relations^{[6]}
Mathematically, L^{2} is a Casimir invariant of the Lie algebra SO(3) spanned by L.
As above, there is an analogous relationship in classical physics:
where L_{i} is a component of the classical angular momentum operator, and is the Poisson bracket.^{[7]}
Returning to the quantum case, the same commutation relations apply to the other angular momentum operators (spin and total angular momentum), as well,
Uncertainty principleEdit
In general, in quantum mechanics, when two observable operators do not commute, they are called complementary observables. Two complementary observables cannot be measured simultaneously; instead they satisfy an uncertainty principle. The more accurately one observable is known, the less accurately the other one can be known. Just as there is an uncertainty principle relating position and momentum, there are uncertainty principles for angular momentum.
The Robertson–Schrödinger relation gives the following uncertainty principle:
where is the standard deviation in the measured values of X and denotes the expectation value of X. This inequality is also true if x, y, z are rearranged, or if L is replaced by J or S.
Therefore, two orthogonal components of angular momentum (for example L_{x} and L_{y}) are complementary and cannot be simultaneously known or measured, except in special cases such as .
It is, however, possible to simultaneously measure or specify L^{2} and any one component of L; for example, L^{2} and L_{z}. This is often useful, and the values are characterized by the azimuthal quantum number (l) and the magnetic quantum number (m). In this case the quantum state of the system is a simultaneous eigenstate of the operators L^{2} and L_{z}, but not of L_{x} or L_{y}. The eigenvalues are related to l and m, as shown in the table below.
QuantizationEdit
In quantum mechanics, angular momentum is quantized – that is, it cannot vary continuously, but only in "quantum leaps" between certain allowed values. For any system, the following restrictions on measurement results apply, where is reduced Planck constant:
If you measure...  ...the result can be...  Notes 

, where  m is sometimes called magnetic quantum number.
This same quantization rule holds for any component of L; e.g., L_{x} or L_{y}. This rule is sometimes called spatial quantization.^{[8]}  
or  , where  For S_{z}, m is sometimes called spin projection quantum number.
For J_{z}, m is sometimes called total angular momentum projection quantum number. This same quantization rule holds for any component of S or J; e.g., S_{x} or J_{y}. 
, where  L^{2} is defined by .
is sometimes called azimuthal quantum number or orbital quantum number.  
, where  s is called spin quantum number or just spin. For example, a spin½ particle is a particle where s = ½.  
, where  j is sometimes called total angular momentum quantum number.  
and simultaneously 
for , and for
where and

(See above for terminology.) 
and
simultaneously 
for , and for
where and

(See above for terminology.) 
and
simultaneously 
for , and for
where and

(See above for terminology.) 
Derivation using ladder operatorsEdit
A common way to derive the quantization rules above is the method of ladder operators.^{[9]} The ladder operators are defined:
Suppose a state is a state in the simultaneous eigenbasis of and (i.e., a state with a single, definite value of and a single, definite value of ). Then using the commutation relations, one can prove that and are also in the simultaneous eigenbasis, with the same value of , but where is increased or decreased by , respectively. (It is also possible that one or both of these result vectors is the zero vector.) (For a proof, see ladder operator#Angular momentum.)
By manipulating these ladder operators and using the commutation rules, it is possible to prove almost all of the quantization rules above.
Click [show] on the right to see more details in the ladderoperator proof of the quantization rules^{[9]} 

Before starting the main proof, we will note a useful fact: That are positivesemidefinite operators, meaning that all their eigenvalues are nonnegative. That also implies that the same is true for their sums, including and . The reason is that the square of any Hermitian operator is always positive semidefinite. (A Hermitian operator has real eigenvalues, so the squares of those eigenvalues are nonnegative.)
As above, assume that a state is a state in the simultaneous eigenbasis of and . Its eigenvalue with respect to can be written in the form for some real number j > 0 (because as mentioned in the previous paragraph, has nonnegative eigenvalues), and its eigenvalue with respect to can be written for some real number m. Instead of we will use the more descriptive notation . Next, consider the sequence ("ladder") of states Some entries in this infinite sequence may be the zero vector (as we will see). However, as described above, all the nonzero entries have the same value of , and among the nonzero entries, each entry has a value of which is exactly more than the previous entry. In this ladder, there can only be a finite number of nonzero entries, with infinite copies of the zero vector on the left and right. The reason is, as mentioned above, is positivesemidefinite, so if any quantum state is an eigenvector of both and , the former eigenvalue is larger. The states in the ladder all have the same eigenvalue, but going very far to the left or the right, the eigenvalue gets larger and larger. The only possible resolution is, as mentioned, that there are only finitely many nonzero entries in the ladder. Now, consider the last nonzero entry to the right of the ladder, . This state has the property that . As proven in the ladder operator article, If this is zero, then , so or . However, because is positivesemidefinite, , which means that the only possibility is . Similarly, consider the first nonzero entry on the left of the ladder, . This state has the property that . As proven in the ladder operator article, As above, the only possibility is that Since m changes by 1 on each step of the ladder, is an integer, so j is an integer or halfinteger (0 or 0.5 or 1 or 1.5...). 
Since S and L have the same commutation relations as J, the same ladder analysis works for them.
The ladderoperator analysis does not explain one aspect of the quantization rules above: the fact that L (unlike J and S) cannot have halfinteger quantum numbers. This fact can be proven (at least in the special case of one particle) by writing down every possible eigenfunction of L^{2} and L_{z}, (they are the spherical harmonics), and seeing explicitly that none of them have halfinteger quantum numbers.^{[10]} An alternative derivation is below.
Visual interpretationEdit
Since the angular momenta are quantum operators, they cannot be drawn as vectors like in classical mechanics. Nevertheless, it is common to depict them heuristically in this way. Depicted on the right is a set of states with quantum numbers , and for the five cones from bottom to top. Since , the vectors are all shown with length . The rings represent the fact that is known with certainty, but and are unknown; therefore every classical vector with the appropriate length and zcomponent is drawn, forming a cone. The expected value of the angular momentum for a given ensemble of systems in the quantum state characterized by and could be somewhere on this cone while it cannot be defined for a single system (since the components of do not commute with each other).
Quantization in macroscopic systemsEdit
The quantization rules are technically true even for macroscopic systems, like the angular momentum L of a spinning tire. However they have no observable effect. For example, if is roughly 100000000, it makes essentially no difference whether the precise value is an integer like 100000000 or 100000001, or a noninteger like 100000000.2—the discrete steps are too small to notice.
Angular momentum as the generator of rotationsEdit
The most general and fundamental definition of angular momentum is as the generator of rotations.^{[5]} More specifically, let be a rotation operator, which rotates any quantum state about axis by angle . As , the operator approaches the identity operator, because a rotation of 0° maps all states to themselves. Then the angular momentum operator about axis is defined as:^{[5]}
where 1 is the identity operator. Also notice that R is an additive morphism : ; as a consequence^{[5]}
where exp is matrix exponential.
In simpler terms, the total angular momentum operator characterizes how a quantum system is changed when it is rotated. The relationship between angular momentum operators and rotation operators is the same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below.
Just as J is the generator for rotation operators, L and S are generators for modified partial rotation operators. The operator
rotates the position (in space) of all particles and fields, without rotating the internal (spin) state of any particle. Likewise, the operator
rotates the internal (spin) state of all particles, without moving any particles or fields in space. The relation J = L + S comes from:
i.e. if the positions are rotated, and then the internal states are rotated, then altogether the complete system has been rotated.
SU(2), SO(3), and 360° rotationsEdit
Although one might expect (a rotation of 360° is the identity operator), this is not assumed in quantum mechanics, and it turns out it is often not true: When the total angular momentum quantum number is a halfinteger (1/2, 3/2, etc.), , and when it is an integer, .^{[5]} Mathematically, the structure of rotations in the universe is not SO(3), the group of threedimensional rotations in classical mechanics. Instead, it is SU(2), which is identical to SO(3) for small rotations, but where a 360° rotation is mathematically distinguished from a rotation of 0°. (A rotation of 720° is, however, the same as a rotation of 0°.)^{[5]}
On the other hand, in all circumstances, because a 360° rotation of a spatial configuration is the same as no rotation at all. (This is different from a 360° rotation of the internal (spin) state of the particle, which might or might not be the same as no rotation at all.) In other words, the operators carry the structure of SO(3), while and carry the structure of SU(2).
From the equation , one picks an eigenstate and draws
which is to say that the orbital angular momentum quantum numbers can only be integers, not halfintegers.
Connection to representation theoryEdit
Starting with a certain quantum state , consider the set of states for all possible and , i.e. the set of states that come about from rotating the starting state in every possible way. This is a vector space, and therefore the manner in which the rotation operators map one state onto another is a representation of the group of rotation operators.
 When rotation operators act on quantum states, it forms a representation of the Lie group SU(2) (for R and R_{internal}), or SO(3) (for R_{spatial}).
From the relation between J and rotation operators,
 When angular momentum operators act on quantum states, it forms a representation of the Lie algebra or .
(The Lie algebras of SU(2) and SO(3) are identical.)
The ladder operator derivation above is a method for classifying the representations of the Lie algebra SU(2).
Connection to commutation relationsEdit
Classical rotations do not commute with each other: For example, rotating 1° about the xaxis then 1° about the yaxis gives a slightly different overall rotation than rotating 1° about the yaxis then 1° about the xaxis. By carefully analyzing this noncommutativity, the commutation relations of the angular momentum operators can be derived.^{[5]}
(This same calculational procedure is one way to answer the mathematical question "What is the Lie algebra of the Lie groups SO(3) or SU(2)?")
Conservation of angular momentumEdit
The Hamiltonian H represents the energy and dynamics of the system. In a sphericallysymmetric situation, the Hamiltonian is invariant under rotations:
where R is a rotation operator. As a consequence, , and then due to the relationship between J and R. By the Ehrenfest theorem, it follows that J is conserved.
To summarize, if H is rotationallyinvariant (spherically symmetric), then total angular momentum J is conserved. This is an example of Noether's theorem.
If H is just the Hamiltonian for one particle, the total angular momentum of that one particle is conserved when the particle is in a central potential (i.e., when the potential energy function depends only on ). Alternatively, H may be the Hamiltonian of all particles and fields in the universe, and then H is always rotationallyinvariant, as the fundamental laws of physics of the universe are the same regardless of orientation. This is the basis for saying conservation of angular momentum is a general principle of physics.
For a particle without spin, J = L, so orbital angular momentum is conserved in the same circumstances. When the spin is nonzero, the spinorbit interaction allows angular momentum to transfer from L to S or back. Therefore, L is not, on its own, conserved.
Angular momentum couplingEdit
Often, two or more sorts of angular momentum interact with each other, so that angular momentum can transfer from one to the other. For example, in spinorbit coupling, angular momentum can transfer between L and S, but only the total J = L + S is conserved. In another example, in an atom with two electrons, each has its own angular momentum J_{1} and J_{2}, but only the total J = J_{1} + J_{2} is conserved.
In these situations, it is often useful to know the relationship between, on the one hand, states where all have definite values, and on the other hand, states where all have definite values, as the latter four are usually conserved (constants of motion). The procedure to go back and forth between these bases is to use Clebsch–Gordan coefficients.
One important result in this field is that a relationship between the quantum numbers for :
 .
For an atom or molecule with J = L + S, the term symbol gives the quantum numbers associated with the operators .
Orbital angular momentum in spherical coordinatesEdit
Angular momentum operators usually occur when solving a problem with spherical symmetry in spherical coordinates. The angular momentum in the spatial representation is^{[11]}
In spherical coordinates the angular part of the Laplace operator can be expressed by the angular momentum. This leads to the relation
When solving to find eigenstates of the operator , we obtain the following
where
are the spherical harmonics.
See alsoEdit
 Runge–Lenz vector (used to describe the shape and orientation of bodies in orbit)
 Holstein–Primakoff transformation
 Jordan map (Schwinger's bosonic model of angular momentum^{[12]})
 Vector model of the atom
 Pauli–Lubanski pseudovector
 Angular momentum diagrams (quantum mechanics)
 Spherical basis
 Tensor operator
 Orbital magnetization
 Orbital angular momentum of free electrons
 Orbital angular momentum of light
ReferencesEdit
 ^ Introductory Quantum Mechanics, Richard L. Liboff, 2nd Edition, ISBN 0201547155
 ^ Aruldhas, G. (20040201). "formula (8.8)". Quantum Mechanics. p. 171. ISBN 9788120319622.
 ^ Shankar, R. (1994). Principles of quantum mechanics (2nd ed.). New York: Kluwer Academic / Plenum. p. 319. ISBN 9780306447907.
 ^ H. Goldstein, C. P. Poole and J. Safko, Classical Mechanics, 3rd Edition, AddisonWesley 2002, pp. 388 ﬀ.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} Littlejohn, Robert (2011). "Lecture notes on rotations in quantum mechanics" (PDF). Physics 221B Spring 2011. Retrieved 13 Jan 2012.
 ^ Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. p. 146.
 ^ Goldstein et al, p. 410
 ^ Introduction to quantum mechanics: with applications to chemistry, by Linus Pauling, Edgar Bright Wilson, page 45, google books link
 ^ ^{a} ^{b} Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. pp. 147–149.
 ^ Griffiths, David J. (1995). Introduction to Quantum Mechanics. Prentice Hall. pp. 148–153.
 ^ Bes, Daniel R. (2007). Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg. p. 70. ISBN 9783540462156. Retrieved 20110329.
 ^ Schwinger, Julian (1952). On Angular Momentum (PDF). U.S. Atomic Energy Commission.
Further readingEdit
 Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 007145546 9
 Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum’s Easy Oulines Crash Course, Mc Graw Hill (USA), 2006, ISBN 0071455337 ISBN 9780071455336
 Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 9780471873730
 Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 9780131461000
 Physics of Atoms and Molecules, B.H. Bransden, C.J.Joachain, Longman, 1983, ISBN 0582444012